Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 4 Issue 2
Mar.  2019
Turn off MathJax
Article Contents
Spielman R. B., Reisman D. B.. On the design of magnetically insulated transmission lines for z-pinch loads[J]. Matter and Radiation at Extremes, 2019, 4(2): 027402. doi: 10.1063/1.5089765
Citation: Spielman R. B., Reisman D. B.. On the design of magnetically insulated transmission lines for z-pinch loads[J]. Matter and Radiation at Extremes, 2019, 4(2): 027402. doi: 10.1063/1.5089765

On the design of magnetically insulated transmission lines for z-pinch loads

doi: 10.1063/1.5089765
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: rbspielman@me.com
  • Received Date: 2018-09-13
  • Accepted Date: 2018-12-12
  • Available Online: 2021-04-13
  • Publish Date: 2019-03-15
  • Many papers have been published on the theory of magnetic insulation and the use of Zflow analysis of magnetically insulated transmission lines (MITLs). We describe herein a novel design process using the circuit code SCREAMER for a real-world MITL for z-pinch loads based on the Zflow model of magnetic insulation. In particular, we design a 15-TW, 10-MA, 100-ns double-disk transmission line using only circuit modeling tools and Zflow analysis of the MITL. Critical issues such as current loss to the anode during the setup of magnetic insulation and the transition from a non-emitting vacuum power feed to an MITL play a large role in the MITL design. This very rapid design process allows us for the first time to explore innovative MITL designs such as variable-impedance MITLs that provide a significantly lower total inductance and improved energy delivery to the load. The tedious process of modeling the final MITL design with highly resolved 2D and 3D electromagnetic particle-in-cell codes occurs as a validation step, not as part of the design process.
  • loading
  • [1]
    [2]
    [3]
    R. B. Spielman, C. Deeney, G. A. Chandler, M. R. Douglas, D. L. Fehl et al., “Z: A precision 200-TW, 2-MJ Z-pinch x-ray source,” Bull. Am. Phys. Soc. 42, 1947 (1997), http://flux.aps.org/meetings/YR97/BAPSDPP97/abs/S4000002.html.
    [4]
    [5]
    [6]
    R. B. Spielman, R. J. Dukart, D. L. Hanson, B. A. Hammel, W. W. Hsing et al., “Z-pinch experiments on Saturn at 30 TW,” AIP Conf. Proc. 195, 3 (1989).10.1063/1.38844 doi: 10.1063/1.38844
    [7]
    D. B. Seidel, M. L. Kiefer, R. S. Coats, T. D. Pointon, J. P. Quintenz et al., “The 3-D, electromagnetic, particle-in-cell code, QUICKSILVER,” Int. J. Mod. Phys. C 02, 475 (1991).10.1142/s012918319100072x doi: 10.1142/s012918319100072x
    [8]
    T. D. Pointon, W. A. Stygar, R. B. Spielman, H. C. Ives, and K. W. Struve, “Particle-in-cell simulations of electron flow in the post-hole convolute of the Z accelerator,” Phys. Plasmas 8, 4534 (2001).10.1063/1.1401118 doi: 10.1063/1.1401118
    [9]
    [10]
    [11]
    J. M. Creedon, “Relativistic Brillouin flow in the high ν/γ diode,” J. Appl. Phys. 46, 2946 (1975).10.1063/1.322034 doi: 10.1063/1.322034
    [12]
    J. M. Creedon, “Magnetic cutoff in high‐current diodes,” J. Appl. Phys. 48, 1070 (1977).10.1063/1.323782 doi: 10.1063/1.323782
    [13]
    C. W. Mendel, Jr., “Planar one-dimensional magnetically insulated electron flow for arbitrary canonical-momentum distribution,” J. Appl. Phys. 50, 3830 (1979).10.1063/1.326508 doi: 10.1063/1.326508
    [14]
    [15]
    [16]
    J. P. VanDevender, “Long self-magnetically insulated power transport experiments,” J. Appl. Phys. 50, 3928 (1979).10.1063/1.326522 doi: 10.1063/1.326522
    [17]
    J. P. VanDevender, J. T. Crow, B. G. Epstein, D. H. McDaniel, C. W. Mendel et al., “Self-magnetically insulated electron flow in vacuum transmission lines,” Physica B+C 104, 167 (1981).10.1016/0378-4363(81)90048-6 doi: 10.1016/0378-4363(81)90048-6
    [18]
    C. W. Mendel, D. B. Seidel, and S. E. Rosenthal, “A simple theory of magnetic insulation from basic physical considerations,” Laser Part. Beams 1, 311 (1983).10.1017/S0263034600000379 doi: 10.1017/S0263034600000379
    [19]
    C. W. Mendel, Jr., D. B. Seidel, and S. A. Slutz, “A general theory of magnetically insulated electron flow,” Phys. Fluids 26, 3628 (1983); 10.1063/1.864133 doi: 10.1063/1.864133
    [20]
    M. S. Di Capua, “Magnetic insulation,” IEEE Trans. Plasma Sci. 11, 205 (1983).10.1109/TPS.1983.4316252 doi: 10.1109/TPS.1983.4316252
    [21]
    P. A. Miller and C. W. Mendel, Jr., “Analytic model of applied-B ion diode impedance behavior,” J. Appl. Phys. 61, 529 (1987).10.1063/1.338253 doi: 10.1063/1.338253
    [22]
    S. E. Rosenthal, “Characterization of electron flow in negative- and positive-polarity linear-induction accelerators,” IEEE Trans. Plasma Sci. 19, 822 (1991).10.1109/27.108419 doi: 10.1109/27.108419
    [23]
    C. W. Mendel, S. E. Rosenthal, and D. B. Seidel, “Low-pressure relativistic electron flow,” Phys. Rev. A 45, 5854 (1992).10.1103/PhysRevA.45.5854 doi: 10.1103/PhysRevA.45.5854
    [24]
    C. W. Mendel, Jr., M. E. Savage, D. M. Zagar, W. W. Simpson, T. W. Grasser et al., “Experiments on a current-toggled plasma-opening switch,” J. Appl. Phys. 71, 3731 (1992).10.1063/1.350883 doi: 10.1063/1.350883
    [25]
    C. W. Mendel, Jr., “Status of magnetically-insulated power transmission theory,” SAND-95-3014C, Sandia National Laboratories, Albuquerque, NM, 1995, https://www.osti.gov/servlets/purl/238537.
    [26]
    C. W. Mendel, Jr. and S. E. Rosenthal, “Modeling magnetically insulated devices using flow impedance,” Phys. Plasma 2, 1332 (1995).10.1063/1.871345 doi: 10.1063/1.871345
    [27]
    C. W. Mendel, Jr. and S. E. Rosenthal, “Dynamic modeling of magnetically insulated transmission line systems,” Phys. Plasma 3, 4207 (1996).10.1063/1.871553 doi: 10.1063/1.871553
    [28]
    C. W. Mendel, Jr. and D. B. Seidel, “Flow impedance in a uniform magnetically insulated transmission line,” Phys. Plasma 6, 4791 (1999).10.1063/1.873770 doi: 10.1063/1.873770
    [29]
    P. F. Ottinger and J. W. Schumer, “Rescaling of equilibrium magnetically insulated flow theory based on results from particle-in-cell simulations,” Phys. Plasma 13, 063109 (2006).10.1063/1.2212831 doi: 10.1063/1.2212831
    [30]
    W. A. Stygar, T. C. Wagoner, H. C. Ives, P. A. Corcoran, M. E. Cuneo et al., “Analytic model of a magnetically insulated transmission line with collisional flow electrons,” Phys. Rev. Spec. Top.--Accel. Beams 9, 090401 (2006).10.1103/PhysRevSTAB.9.090401 doi: 10.1103/PhysRevSTAB.9.090401
    [31]
    P. F. Ottinger, J. W. Schumer, D. D. Hinshelwood, and R. J. Allen, “Generalized model for magnetically insulated transmission line flow,” IEEE Trans. Plasma Sci. 36, 2708 (2008).10.1109/TPS.2008.2004221 doi: 10.1109/TPS.2008.2004221
    [32]
    [33]
    [34]
    [35]
    W. A. Stygar, P. A. Corcoran, H. C. Ives, R. B. Spielman, J. W. Douglas et al., “55-TW magnetically insulated transmission-line system: Design, simulations, and performance,” Phys. Rev. Spec. Top.--Accel. Beams 12, 120401 (2009).10.1103/PhysRevSTAB.12.120401 doi: 10.1103/PhysRevSTAB.12.120401
    [36]
    M. Savage, J. Martin, T. Pointon, C. Mendel, D. Jackson et al., “Precision electron flow measurements in a disk transmission line,” Sandia National Laboratories, Albuquerque, NM, Report SAND2007-8156, 2008, https://prod.sandia.gov/techlib-noauth/access-control.cgi/2007/078156.pdf.
    [37]
    J. P. VanDevender, T. D. Pointon, D. B. Seidel, K. W. Struve, C. Jennings et al., “Requirements for self-magnetically insulated transmission lines,” Phys. Rev. Spec. Top.--Accel. Beams 18, 030401 (2015).10.1103/PhysRevSTAB.18.030401 doi: 10.1103/PhysRevSTAB.18.030401
    [38]
    R. B. Spielman, D. H. Froula, G. Brent, E. M. Campbell, D. B. Reisman et al., “Conceptual design of a 15-TW pulsed-power accelerator for high-energy-density–physics experiments,” Matter Radiat. Extremes 2, 204 (2017).10.1016/j.mre.2017.05.002 doi: 10.1016/j.mre.2017.05.002
    [39]
    T. W. L. Sanford, J. A. Halbleib, J. W. Poukey, A. L. Pregenzer, R. C. Pate et al., “Measurement of electron energy deposition necessary to form an anode plasma in Ta, Ti, and C for coaxial Bremsstrahlung diodes,” J. Appl. Phys. 66, 10 (1989).10.1063/1.343913 doi: 10.1063/1.343913
    [40]
    B. C. Franke, R. P. Kensek, and T. W. Laub, “ITS version 5.0: The integrated TIGER series of coupled electron/photon Monte Carlo transport codes with CAD geometry,” Sandia National Laboratories, Report No. SAND--2004-5172, 2005, https://www.osti.gov/servlets/purl/877725-5A1CKs/.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(3)

    Article Metrics

    Article views (236) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return