Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 4 Issue 4
Jul.  2019
Turn off MathJax
Article Contents
He Yudan, Jin Lei, Zhang Jiqiang, Luo Bingchi, Li Kai, Wu Weidong, Luo Jiangshan. Thickness dependence of microstructure and properties in Be2C coatings as a promising ablation material[J]. Matter and Radiation at Extremes, 2019, 4(4): 045403. doi: 10.1063/1.5087112
Citation: He Yudan, Jin Lei, Zhang Jiqiang, Luo Bingchi, Li Kai, Wu Weidong, Luo Jiangshan. Thickness dependence of microstructure and properties in Be2C coatings as a promising ablation material[J]. Matter and Radiation at Extremes, 2019, 4(4): 045403. doi: 10.1063/1.5087112

Thickness dependence of microstructure and properties in Be2C coatings as a promising ablation material

doi: 10.1063/1.5087112
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: jiangshanluo@caep.cn.
  • Received Date: 2018-12-28
  • Accepted Date: 2019-04-06
  • Available Online: 2021-04-15
  • Publish Date: 2019-07-15
  • Beryllium carbide (Be2C) thin films have proven to be promising ablation materials, but the properties of Be2C coatings of the greater thickness required for inertial confinement fusion capsules are still unknown. In this work, Be2C coatings of various thicknesses (0.3–32.9 µm) are prepared by DC reactive magnetron sputtering. The influence of thickness on crystal properties, microstructure, and optical properties is investigated. The results indicate that the crystallinity of polycrystalline Be2C films improves with increasing thickness, while the grain size (∼5 nm) and texture properties (without a preferred orientation) have only a weak dependence on thickness. A uniform featureless microstructure and smooth surface (root mean square roughness ∼8 nm) are observed even in thick (32.9 µm) films, despite the presence of defects induced by contaminants. High densities (2.19–2.31 g/cm3) and high deposition rates (∼270 nm/h) are realized, with the latter corresponding to the upper limit for the fabrication of Be2C coatings by magnetron sputtering. The transmittance of the films in the near-infrared region remains at a high level (>80%) and has only a weak dependence on thickness, while the transmittance in the visible region decreases with increasing thickness. In addition, the optical bandgap is estimated to be about 1.9 eV and decreases with increasing thickness owing to the presence of defects.
  • loading
  • [1]
    K. Lan, J. Liu, Z. C. Li, X. F. Xie, W. Y. Huo et al., “Progress in octahedral spherical hohlraum study,” Matter Radiat. Extremes 1, 8–27 (2016).10.1016/j.mre.2016.01.003 doi: 10.1016/j.mre.2016.01.003
    [2]
    B. A. Hammel1 and National Ignition Campaign Team, “The NIF ignition program: Progress and planning,” Plasma Phys. Controlled Fusion 48, B497–B506 (2006).10.1088/0741-3335/48/12b/s47 doi: 10.1088/0741-3335/48/12b/s47
    [3]
    S. W. Haan, J. D. Lindl, D. A. Callahan, D. S. Clark, J. D. Salmonson, B. A. Hammel et al., “Point design targets, specifications, and requirements for the 2010 ignition campaign on the National Ignition Facility,” Phys. Plasmas 18, 051001 (2011).10.1063/1.3592169 doi: 10.1063/1.3592169
    [4]
    A. L. Kritcher, D. Clark, S. Haan, S. A. Yi, A. B. Zylstra et al., “Comparison of plastic, high density carbon, and beryllium as indirect drive NIF ablators,” Phys. Plasmas 25, 056309 (2018).10.1063/1.5018000 doi: 10.1063/1.5018000
    [5]
    D. S. Clark, A. L. Kritcher, S. A. Yi, A. B. Zylstra, S. W. Haan et al., “Capsule physics comparison of National Ignition Facility implosion designs using plastic, high density carbon, and beryllium ablators,” Phys. Plasmas 25, 032703 (2018).10.1063/1.5016874 doi: 10.1063/1.5016874
    [6]
    J. L. Kline, S. A. Yi, A. N. Simakov, R. E. Olson, D. C. Wilson et al., “First beryllium capsule implosions on the National Ignition Facility,” Phys. Plasmas 23, 056310 (2016).10.1063/1.4948277 doi: 10.1063/1.4948277
    [7]
    A. Nikroo, K. C. Chen, M. L. Hoppe, H. Huang, J. R. Wall, H. Xu et al., “Progress toward fabrication of graded doped beryllium and CH capsules for the National Ignition Facility,” Phys. Plasmas 13, 056302 (2006).10.1063/1.2179054 doi: 10.1063/1.2179054
    [8]
    J. L. Kline and J. D. Hager, “Aluminum X-ray mass-ablation rate measurements,” Matter Radiat. Extremes 2, 16–21 (2017).10.1016/j.mre.2016.09.003 doi: 10.1016/j.mre.2016.09.003
    [9]
    A. J. MacKinnon, N. B. Meezan, J. S. Ross, S. L. Pape, L. B. Hopkins, L. Divol et al., “High-density carbon ablator experiments on the National Ignition Facility,” Phys. Plasmas 21, 056318 (2014).10.1063/1.4876611 doi: 10.1063/1.4876611
    [10]
    O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan et al., “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506, 343–348 (2014).10.1038/nature13008 doi: 10.1038/nature13008
    [11]
    H. S. Park, O. A. Hurricane, D. A. Callahan, D. T. Casey, E. L. Dewald et al., “High-adiabat high-foot inertial confinement fusion implosion experiments on the National Ignition Facility,” Phys. Rev. Lett. 112, 055001 (2014).10.1103/physrevlett.112.055001 doi: 10.1103/physrevlett.112.055001
    [12]
    Y. D. He, J. S. Luo, K. Li, B. C. Luo, J. Q. Zhang, W. D. Wu et al., “Influence of CH4–Ar ratios on the composition, microstructure and optical properties of Be2C films synthesized by DC reactive magnetron sputtering,” RSC Adv. 6, 39444–39451 (2016).10.1039/c6ra02141g doi: 10.1039/c6ra02141g
    [13]
    Y. D. He, J. Q. Zhang, B. C. Luo, K. Li, L. Chen et al., “Effect of substrate temperature on the microstructure and properties of Be2C films: Aim to advance its applications as ICF ablator,” J. Alloys Compd. 728, 71–77 (2017).10.1016/j.jallcom.2017.08.185 doi: 10.1016/j.jallcom.2017.08.185
    [14]
    W. S. Shih, Plasma-Deposited Beryllium Carbide Coatings for Application to Inertial Confinement Fusion (University of Missouri, Rolla, MO, 1997).
    [15]
    Y. X. Xie, R. B. Stephens, N. C. Morosoff, and W. J. Jame, “A very suitable coating material for ICF capsule nonstoichiometric beryllium carbide composite,” J. Fusion Energy 17, 259–260 (1998).10.1023/a:1021822715909 doi: 10.1023/a:1021822715909
    [16]
    E. H. Lundgren, A. C. Forsman, M. L. Hoppe, K. A. Moreno, and A. Nikroo, “Fabrication of pressurized 2 mm beryllium targets for ICF experiments,” Fusion Sci. Technol. 51, 576–580 (2007).10.13182/fst51-756 doi: 10.13182/fst51-756
    [17]
    P. M. Vaghefi, A. Baghizadeh, M. G. Willinger, M. J. Pereira, D. A. Mota et al., “Thickness dependence of microstructure in thin La0.7Sr0.3MnO3 films grown on (100) SrTiO3 substrate,” J. Phys. D: Appl. Phys. 50, 395301 (2017).10.1088/1361-6463/aa80bf doi: 10.1088/1361-6463/aa80bf
    [18]
    A. Namoune, T. Touam, and A. Chelouche, “Thickness, annealing and substrate effects on structural, morphological, optical and waveguiding properties of RF sputtered ZnO thin films,” J. Mater. Sci: Mater. Electron. 28, 12207–12219 (2017).10.1007/s10854-017-7036-x doi: 10.1007/s10854-017-7036-x
    [19]
    Y. X. Xie, N. C. Morosoff, and W. J. James, “XPS characterization of beryllium carbide thin films formed via plasma deposition,” J. Nucl. Mater. 289, 48–51 (2001).10.1016/s0022-3115(00)00682-6 doi: 10.1016/s0022-3115(00)00682-6
    [20]
    C. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder, and G. E. Muilenberg, Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer Corporation, Physical Electronics Division, 1979).
    [21]
    H. J. Bunge, Texture Analysis in Materials Science: Mathematical Methods (Elsevier, 2013).
    [22]
    B. C. Luo, K. Li, X. L. Tan, J. Q. Zhang, J. S. Luo, W. D. Wu et al., “Influences of in situ annealing on microstructure, residual stress and electrical resistivity for sputter-deposited Be coating,” J. Alloys Compd. 607, 150–156 (2014).10.1016/j.jallcom.2014.03.128 doi: 10.1016/j.jallcom.2014.03.128
    [23]
    J. Biener, D. D. Ho, C. Wild, E. Woerner, M. M. Biener, B. S. El-dasher et al., “Diamond spheres for inertial confinement fusion,” Nucl. Fusion 49, 112001 (2009).10.1088/0029-5515/49/11/112001 doi: 10.1088/0029-5515/49/11/112001
    [24]
    J. D. Lindl, Inertial Confinement Fusion: The Quest for Ignition and Energy Gain Using Indirect Drive (AIP, 1998).
    [25]
    B. C. Luo, L. Kai, X. L. Kai, J. Q. Zhang, Y. D. He, J. S. Luo et al., “Sputtering pressure influence on growth morphology, surface roughness, and electrical resistivity for strong anisotropy beryllium film,” Chin. Phys. B 23, 066804 (2014).10.1088/1674-1056/23/6/066804 doi: 10.1088/1674-1056/23/6/066804
    [26]
    T. G. Mayerhöfer, H. Mutschke, and J. Popp, “Employing theories far beyond their limits—The case of the (Boguer-) Beer-Lambert law,” Chem. Phys. Chem. 17, 1948–1955 (2016).10.1002/cphc.201600114 doi: 10.1002/cphc.201600114
    [27]
    J. Tauc and A. Menth, “States in the gap,” J. Non-Cryst. Solids 8(10), 569–585 (1972).10.1016/0022-3093(72)90194-9 doi: 10.1016/0022-3093(72)90194-9
    [28]
    A. Dasa, A. K. Chikkala, G. P. Bharti, R. R. Behera, R. S. Mamilla, A. Khare et al., “Effect of thickness on optical and microwave dielectric properties of hydroxyapatite films deposited by RF magnetron sputtering,” J. Alloys Compd. 739, 729–736 (2018).10.1016/j.jallcom.2017.12.293 doi: 10.1016/j.jallcom.2017.12.293
    [29]
    C. H. Lee, W. R. L. Lambrecht, and B. Segall, “Electronic structure of Be2C,” Phys. Rev. B 51(16), 10392–10398 (1995).10.1103/physrevb.51.10392 doi: 10.1103/physrevb.51.10392
    [30]
    C. T. Tzeng, K. D. Tsuei, and W. S. Lo, “Experimental electronic structure of Be2C,” Phys. Rev. B 58(11), 6837–6843 (1998).10.1103/physrevb.58.6837 doi: 10.1103/physrevb.58.6837
    [31]
    M. Zhang, M. J. Xu, M. K. Lia, Q. F. Zhang, Y. M. Lua, J. W. Chen et al., “SnO2 epitaxial films with varying thickness on c-sapphire: Structure evolution and optical band gap modulation,” Appl. Surf. Sci. 423, 611–618 (2017).10.1016/j.apsusc.2017.06.250 doi: 10.1016/j.apsusc.2017.06.250
    [32]
    Y. Wang, W. Tang, J. Liu, and L. Zhang, “Stress-induced anomalous shift of optical band gap in Ga-doped ZnO thin films: Experimental and first-principles study,” Appl. Phys. Lett. 106, 162101 (2015).10.1063/1.4918933 doi: 10.1063/1.4918933
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article Metrics

    Article views (98) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return