Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 4 Issue 2
Mar.  2019
Turn off MathJax
Article Contents
Chen Yue-Yue, Hatsagortsyan Karen Z., Keitel Christoph H.. Generation of twisted γ-ray radiation by nonlinear Thomson scattering of twisted light[J]. Matter and Radiation at Extremes, 2019, 4(2): 024401. doi: 10.1063/1.5086347
Citation: Chen Yue-Yue, Hatsagortsyan Karen Z., Keitel Christoph H.. Generation of twisted γ-ray radiation by nonlinear Thomson scattering of twisted light[J]. Matter and Radiation at Extremes, 2019, 4(2): 024401. doi: 10.1063/1.5086347

Generation of twisted γ-ray radiation by nonlinear Thomson scattering of twisted light

doi: 10.1063/1.5086347
More Information
  • Corresponding author: a)Authors to whom correspondence should be addressed: yue-yue.chen@mpi-hd.mpg.de and k.hatsagortsyan@mpi-hd.mpg.de; a)Authors to whom correspondence should be addressed: yue-yue.chen@mpi-hd.mpg.de and k.hatsagortsyan@mpi-hd.mpg.de
  • Received Date: 2018-07-27
  • Accepted Date: 2018-10-25
  • Available Online: 2021-04-13
  • Publish Date: 2019-03-15
  • Interaction of twisted strong laser radiation with electrons in the classical regime is considered. We investigate transfer of the angular momentum of absorbed laser photons to the emitted radiation. An interaction regime is considered where radiation reaction is negligible and the formation length of radiation is comparable to or larger than the laser wavelength. The latter condition ensures that the structure of the laser field plays a role in the electron dynamics during the formation of radiation. We distinguish the case of a single electron from that of an electron beam. For a single electron, the spin angular momentum of the driving laser photons is transferred to the radiation field, while the orbital angular momentum of the laser field is not. We conclude that in the classical regime, to imprint the angular momentum of twisted light on radiation, an electron beam is a prerequisite. In the latter case, nonlinear Thomson scattering of twisted light off an ultrarelativistic electron beam produces high-frequency radiation that is twisted, with a topological charge proportional to the harmonic order.
  • loading
  • [1]
    L. Allen, M. W. Beijersbergen, R. Spreeuw, and J. Woerdman, “Orbital angular momentum of light and the transformation of laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185 (1992).10.1103/physreva.45.8185 doi: 10.1103/physreva.45.8185
    [2]
    A. Picón, A. Benseny, J. Mompart, J. R. V. de Aldana, L. Plaja, G. F. Calvo, and L. Roso, “Transferring orbital and spin angular momenta of light to atoms,” New J. Phys. 12(8), 083053 (2010).10.1088/1367-2630/12/8/083053 doi: 10.1088/1367-2630/12/8/083053
    [3]
    A. Alexandrescu, D. Cojoc, and E. Di Fabrizio, “Mechanism of angular momentum exchange between molecules and laguerre-Gaussian beams,” Phys. Rev. Lett. 96(24), 243001 (2006).10.1103/physrevlett.96.243001 doi: 10.1103/physrevlett.96.243001
    [4]
    M. Babiker, C. Bennett, D. Andrews, and L. D. Romero, “Orbital angular momentum exchange in the interaction of twisted light with molecules,” Phys. Rev. Lett. 89(14), 143601 (2002).10.1103/physrevlett.89.143601 doi: 10.1103/physrevlett.89.143601
    [5]
    K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).10.1103/physrevlett.110.143603 doi: 10.1103/physrevlett.110.143603
    [6]
    A. Surzhykov, D. Seipt, V. G. Serbo, and S. Fritzsche, “Interaction of twisted light with many-electron atoms and ions,” Phys. Rev. A 91(1), 013403 (2015).10.1103/physreva.91.013403 doi: 10.1103/physreva.91.013403
    [7]
    R. A. Müller, D. Seipt, R. Beerwerth, M. Ornigotti, A. Szameit, S. Fritzsche, and A. Surzhykov, “Photoionization of neutral atoms by X waves carrying orbital angular momentum,” Phys. Rev. A 94(4), 041402 (2016).10.1103/physreva.94.041402 doi: 10.1103/physreva.94.041402
    [8]
    A. Afanasev, C. E. Carlson, and A. Mukherjee, “Off-axis excitation of hydrogenlike atoms by twisted photons,” Phys. Rev. A 88, 033841 (2013).10.1103/physreva.88.033841 doi: 10.1103/physreva.88.033841
    [9]
    C. T. Schmiegelow, J. Schulz, H. Kaufmann, T. Ruster, U. G. Poschinger, and F. Schmidt-Kaler, “Transfer of optical orbital angular momentum to a bound electron,” Nat. Commun. 7, 12998 (2016).10.1038/ncomms12998 doi: 10.1038/ncomms12998
    [10]
    A. A. Peshkov, D. Seipt, A. Surzhykov, and S. Fritzsche, “Photoexcitation of atoms by Laguerre-Gaussian beams,” Phys. Rev. A 96(2), 023407 (2017).10.1103/physreva.96.023407 doi: 10.1103/physreva.96.023407
    [11]
    A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).10.1038/35085529 doi: 10.1038/35085529
    [12]
    A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Shadow effects in spiral phase contrast microscopy,” Phys. Rev. Lett. 94(23), 233902 (2005).10.1103/physrevlett.94.233902 doi: 10.1103/physrevlett.94.233902
    [13]
    H. He, M. Friese, N. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75(5), 826 (1995).10.1103/physrevlett.75.826 doi: 10.1103/physrevlett.75.826
    [14]
    M. P. Lavery, F. C. Speirits, S. M. Barnett, and M. J. Padgett, “Detection of a spinning object using light’s orbital angular momentum,” Science 341(6145), 537–540 (2013).10.1126/science.1239936 doi: 10.1126/science.1239936
    [15]
    M. van Veenendaal and I. McNulty, “Prediction of strong dichroism induced by x rays carrying orbital momentum,” Phys. Rev. Lett. 98(15), 157401 (2007).10.1103/physrevlett.98.157401 doi: 10.1103/physrevlett.98.157401
    [16]
    W. Wang, B. Shen, X. Zhang, L. Zhang, Y. Shi, and Z. Xu, “Hollow screw-like drill in plasma using an intense Laguerre-Gaussian laser,” Sci. Rep. 5, 08274 (2015).10.1038/srep08274 doi: 10.1038/srep08274
    [17]
    C. Hernández-García, A. Picón, J. San Román, and L. Plaja, “Attosecond extreme ultraviolet vortices from high-order harmonic generation,” Phys. Rev. Lett. 111(8), 083602 (2013).10.1103/physrevlett.111.083602 doi: 10.1103/physrevlett.111.083602
    [18]
    D. Gauthier, P. R. Ribic, G. Adhikary, A. Camper, C. Chappuis, R. Cucini, L. Dimauro, G. Dovillaire, F. Frassetto, R. Géneaux et al., “Tunable orbital angular momentum in high-harmonic generation,” Nat. Commun. 8, 14971 (2017).10.1038/ncomms14971 doi: 10.1038/ncomms14971
    [19]
    X. Zhang, B. Shen, Y. Shi, X. Wang, L. Zhang, W. Wang, J. Xu, L. Yi, and Z. Xu, “Generation of intense high-order vortex harmonics,” Phys. Rev. Lett. 114(17), 173901 (2015).10.1103/physrevlett.114.173901 doi: 10.1103/physrevlett.114.173901
    [20]
    X. Zhang, B. Shen, Y. Shi, L. Zhang, L. Ji, X. Wang, Z. Xu, and T. Tajima, “Intense harmonics generation with customized photon frequency and optical vortex,” New J. Phys. 18(8), 083046 (2016).10.1088/1367-2630/18/8/083046 doi: 10.1088/1367-2630/18/8/083046
    [21]
    A. Denoeud, L. Chopineau, A. Leblanc, and F. Quéré, “Interaction of ultraintense laser vortices with plasma mirrors,” Phys. Rev. Lett. 118(3), 033902 (2017).10.1103/physrevlett.118.033902 doi: 10.1103/physrevlett.118.033902
    [22]
    S. Sasaki and I. McNulty, “Proposal for generating brilliant x-ray beams carrying orbital angular momentum,” Phys. Rev. Lett. 100(12), 124801 (2008).10.1103/physrevlett.100.124801 doi: 10.1103/physrevlett.100.124801
    [23]
    E. Hemsing, A. Knyazik, M. Dunning, D. Xiang, A. Marinelli, C. Hast, and J. B. Rosenzweig, “Coherent optical vortices from relativistic electron beams,” Nat. Phys. 9(9), 549 (2013).10.1038/nphys2712 doi: 10.1038/nphys2712
    [24]
    P. R. Ribič, B. Rösner, D. Gauthier, E. Allaria, F. Döring, L. Foglia, L. Giannessi, N. Mahne, M. Manfredda, C. Masciovecchio et al., “Extreme-ultraviolet vortices from a free-electron laser,” Phys. Rev. X 7(3), 031036 (2017).10.1103/physrevx.7.031036 doi: 10.1103/physrevx.7.031036
    [25]
    U. D. Jentschura and V. G. Serbo, “Generation of high-energy photons with large orbital angular momentum by compton backscattering,” Phys. Rev. Lett. 106(1), 013001 (2011).10.1103/physrevlett.106.013001 doi: 10.1103/physrevlett.106.013001
    [26]
    U. D. Jentschura and V. G. Serbo, “Compton upconversion of twisted photons: Backscattering of particles with non-planar wave functions,” Eur. Phys. J. C 71(3), 1571 (2011).10.1140/epjc/s10052-011-1571-z doi: 10.1140/epjc/s10052-011-1571-z
    [27]
    I. Ivanov and V. Serbo, “Scattering of twisted particles: Extension to wave packets and orbital helicity,” Phys. Rev. A 84(3), 033804 (2011).10.1103/physreva.84.033804 doi: 10.1103/physreva.84.033804
    [28]
    S. Stock, A. Surzhykov, S. Fritzsche, and D. Seipt, “Compton scattering of twisted light: Angular distribution and polarization of scattered photons,” Phys. Rev. A 92(1), 013401 (2015).10.1103/physreva.92.013401 doi: 10.1103/physreva.92.013401
    [29]
    V. Petrillo, G. Dattoli, I. Drebot, and F. Nguyen, “Compton scattered x-gamma rays with orbital momentum,” Phys. Rev. Lett. 117(12), 123903 (2016).10.1103/physrevlett.117.123903 doi: 10.1103/physrevlett.117.123903
    [30]
    Y. Taira, T. Hayakawa, and M. Katoh, “Gamma-ray vortices from nonlinear inverse thomson scattering of circularly polarized light,” Sci. Rep. 7(1), 5018 (2017).10.1038/s41598-017-05187-2 doi: 10.1038/s41598-017-05187-2
    [31]
    I. P. Ivanov, “Colliding particles carrying nonzero orbital angular momentum,” Phys. Rev. D 83(9), 093001 (2011).10.1103/physrevd.83.093001 doi: 10.1103/physrevd.83.093001
    [32]
    F. Tamburini, B. Thidé, G. Molina-Terriza, and G. Anzolin, “Twisting of light around rotating black holes,” Nat. Phys. 7(3), 195–197 (2011).10.1038/nphys1907 doi: 10.1038/nphys1907
    [33]
    F. V. Hartemann, A. L. Troha, H. A. Baldis, A. Gupta, A. K. Kerman, E. C. Landahl, N. C. Luhmann, Jr., and J. R. Van Meter, “High-intensity scattering processes of relativistic electrons in vacuum and their relevance to high-energy astrophysics,” Astrophys. J. Suppl. Ser. 127(2), 347 (2000).10.1086/313347 doi: 10.1086/313347
    [34]
    P. Stewart, “Non-linear compton and inverse compton effect,” Astrophys. Space Sci. 18(2), 377–386 (1972).10.1007/bf00645402 doi: 10.1007/bf00645402
    [35]
    J. Arons, “Nonlinear inverse comption radiation and the circular polarization of diffuse radiation from the crab nebula,” Astrophys. J. 177, 395 (1972).10.1086/151717 doi: 10.1086/151717
    [36]
    T. Takiwaki, K. Kotake, and K. Sato, “Special relativistic simulations of magnetically dominated jets in collapsing massive stars,” Astrophys. J. 691(2), 1360 (2009).10.1088/0004-637x/691/2/1360 doi: 10.1088/0004-637x/691/2/1360
    [37]
    M. Katoh, M. Fujimoto, H. Kawaguchi, K. Tsuchiya, K. Ohmi, T. Kaneyasu, Y. Taira, M. Hosaka, A. Mochihashi, and Y. Takashima, “Angular momentum of twisted radiation from an electron in spiral motion,” Phys. Rev. Lett. 118(9), 094801 (2017).10.1103/physrevlett.118.094801 doi: 10.1103/physrevlett.118.094801
    [38]
    A. April, “Nonparaxial elegant laguerre-Gaussian beams,” Opt. Lett. 33(12), 1392–1394 (2008).10.1364/ol.33.001392 doi: 10.1364/ol.33.001392
    [39]
    L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields (Elsevier, Oxford, 1975).
    [40]
    J. Vanderlinde, Classical Electromagnetic Theory (Springer Science & Business Media, 2006), Vol. 145.
    [41]
    Y.-Y. Chen, J.-X. Li, K. Z. Hatsagortsyan, and C. H. Keitel, “γ-ray beams with large orbital angular momentum via nonlinear compton scattering with radiation reaction,” Phys. Rev. Lett. 121(7), 074801 (2018).10.1103/physrevlett.121.074801 doi: 10.1103/physrevlett.121.074801
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views (159) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return