Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 4 Issue 2
Mar.  2019
Turn off MathJax
Article Contents
Renner O., Rosmej F. B.. Challenges of x-ray spectroscopy in investigations of matter under extreme conditions[J]. Matter and Radiation at Extremes, 2019, 4(2): 024201. doi: 10.1063/1.5086344
Citation: Renner O., Rosmej F. B.. Challenges of x-ray spectroscopy in investigations of matter under extreme conditions[J]. Matter and Radiation at Extremes, 2019, 4(2): 024201. doi: 10.1063/1.5086344

Challenges of x-ray spectroscopy in investigations of matter under extreme conditions

doi: 10.1063/1.5086344
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: renner@fzu.cz
  • Received Date: 2018-04-03
  • Accepted Date: 2018-07-02
  • Available Online: 2021-04-13
  • Publish Date: 2019-03-15
  • Advanced X-ray spectroscopic methods provide unique and critical data to study matter under extreme environmental conditions induced by high-intensity and high-energy lasers. The aim of this paper is to contribute to a contemporary discussion of the role of X-ray spectroscopy in the investigation of radiative properties of strongly coupled, highly correlated, and frequently weakly emissive plasma systems formed in matter irradiated by sub-petawatt and petawatt class lasers. After reviewing the properties of different X-ray crystal spectrometers, high-resolution X-ray diagnostic methods are surveyed with respect to their potential to study plasma-induced and externally induced radiation fields, suprathermal electrons, and strong electromagnetic field effects. Atomic physics in dense plasmas is reviewed with emphasis on non-Maxwellian non-LTE atomic kinetics, quasi-stationary and highly-transient conditions, hollow ion X-ray emission, and field-perturbed atoms and ions. Finally, we discuss the role of X-ray free electron lasers with respect to supplementary investigations of matter under extreme conditions via the use of controlled high-intensity radiation fields.
  • loading
  • [1]
    R. W. P. McWhirter, “Spectral intensities,” in Plasma Diagnostic Techniques, edited by R. H. Huddelstone and S. L. Leonard (Academic, New York, 1965).
    [2]
    H. R. Griem, Plasma Spectroscopy (McGraw-Hill, New York, 1964).
    [3]
    H. R. Griem, Spectral Line Broadening by Plasmas (Academic Press, New York, 1974).
    [4]
    H. R. Griem, Principles of Plasma Spectroscopy (Cambridge University Press, Cambridge, 1997).
    [5]
    C. de Michelis and M. Mattioli, “Soft-x-ray spectroscopic diagnostics of laboratory plasmas,” Nucl. Fusion 21, 677 (1981).10.1088/0029-5515/21/6/007 doi: 10.1088/0029-5515/21/6/007
    [6]
    V. A. Boiko, A. V. Vinogradov, S. A. Pikuz, I. Yu Skobelev, and A. Ya. Faenov, “X-ray spectroscopy of laser produced plasma,” J. Sov. Laser Res. 6, 82 (1985).
    [7]
    T. Fujimoto, Plasma Spectroscopy (Oxford Science Publications, Oxford, 2004).
    [8]
    H.-J. Kunze, Introduction to Plasma Spectroscopy (Springer, Heidelberg, 2009).
    [9]
    H.-K. Chung, M. Chen, W. L. Morgan, Y. Ralchenko, and R. W. Lee, “FLYCHK: Generalized population kinetics and spectral model for rapid spectroscopic analysis for all elements,” High Energy Density Phys. 1, 3 (2005).10.1016/j.hedp.2005.07.001 doi: 10.1016/j.hedp.2005.07.001
    [10]
    J. J. MacFarlane, I. E. Golovkin, P. Wang, P. R. Woodruff, and N. A. Pereyra, “SPECT3D—A multi-dimensional collisional-radiative code for generating diagnostic signatures based on hydrodynamics and PIC simulation output,” High Energy Density Phys. 3, 181 (2007).10.1016/j.hedp.2007.02.016 doi: 10.1016/j.hedp.2007.02.016
    [11]
    D. Salzmann, Atomic Physics in Hot Plasmas (Oxford University Press, New York, 1988).
    [12]
    V. S. Lisitsa, Atoms in Plasmas (Springer, New York, 1994).
    [13]
    I. I. Sobelman, L. A. Vainshtein, and E. A. Yukov, Excitation of Atoms and Broadening of Spectral Lines (Springer, Berlin, 1995).
    [14]
    L. A. Bureyeva and V. S. Lisitsa, “A perturbed atom,” Astrophys. Space Phys. Rev. 11, 455 (2000).
    [15]
    F. B. Rosmej, V. A. Astapenko, and V. S. Lisitsa, Plasma Atomic Physics (Springer, New York, 2018).
    [16]
    F. B. Rosmej, “Exotic states of high density matter driven by intense XUV/x-ray free electron lasers,” in Free Electron Laser, edited by S. Varró (InTech, 2012). Free download: http://www.intechopen.com/books/free-electron-lasers/exotic-states-of-high-density-matter-driven-by-intense-xuv-x-ray-free-electron-lasers.
    [17]
    F. B. Rosmej, R. Dachicourt, B. Deschaud, D. Khaghani, M. Dozières , “Exotic x-ray emission from dense plasmas,” J. Phys. B: Rev. Spec. Top. 48, 224005 (2015).10.1088/0953-4075/48/22/224005 doi: 10.1088/0953-4075/48/22/224005
    [18]
    F. B. Rosmej, “Hot electron x-ray diagnostics,” J. Phys. B. Lett.: At., Mol. Opt. Phys. 30, L819 (1997).10.1088/0953-4075/30/22/007 doi: 10.1088/0953-4075/30/22/007
    [19]
    F. B. Rosmej, “X-ray emission spectroscopy and diagnostics of non-equilibrium fusion and laser produced plasmas,” in Highly Charged Ion Spectroscopic Research, edited by Y. Zou and R. Hutton (Taylor & Francis, 2012).
    [20]
    S. H. Glenzer, F. B. Rosmej, R. W. Lee, C. A. Back, K. G. Estabrook , “Measurements of suprathermal electrons in hohlraum plasmas with x-ray spectroscopy,” Phys. Rev. Lett. 81, 365 (1998).10.1103/physrevlett.81.365 doi: 10.1103/physrevlett.81.365
    [21]
    J. Colgan, J. Abdallah, Jr., A. Ya. Faenov, S. A. Pikuz, E. Wagenaars , “Exotic dense-matter states pumped by a relativistic laser plasma in the radiation-dominated regime,” Phys. Rev. Lett. 110, 125001 (2013).10.1103/physrevlett.110.125001 doi: 10.1103/physrevlett.110.125001
    [22]
    D. Khaghani, M. Lobet, B. Borm, L. Burr, F. Gärtner , “Enhancing laser-driven proton acceleration by using micro-pillar arrays at high drive energy,” Sci. Rep. 7, 11366 (2017).10.1038/s41598-017-11589-z doi: 10.1038/s41598-017-11589-z
    [23]
    X-Ray Data Booklet, edited by A. C. Thompson (Lawrence Berkeley National Laboratory, University of California, Berkeley, 2009).
    [24]
    R. Hutton, Z. Shi, and I. Martinson, “Spectroscopic instruments,” in Handbook for Highly Charged Ion Spectroscopic Research, edited by R. Zou and R. Hutton (Taylor & Francis Group, New York 2012).
    [25]
    G. Gilmore, Practical Gamma-Ray Spectrometry (John Wiley & Sons, Chichester, 2008).
    [26]
    B. W. Batterman and H. Cole, “Dynamical diffraction of x rays by perfect crystals,” Rev. Mod. Phys. 36, 681 (1964).10.1103/revmodphys.36.681 doi: 10.1103/revmodphys.36.681
    [27]
    D. Taupin, “Theorie dynamique de la diffraction des rayons x par les cristaux deformes,” Bull. Soc. Fr. Mineral. Crystallogr. 87, 469 (1964).10.3406/bulmi.1964.5769 doi: 10.3406/bulmi.1964.5769
    [28]
    G. Hölzer, O. Wehrhan, and E. Förster, “Characterization of flat and bent crystals for x-ray spectroscopy and imaging,” Cryst. Res. Technol. 33, 555 (1998).10.1002/(sici)1521-4079(1998)33:4<555::aid-crat555>3.3.co;2-h doi: 10.1002/(sici)1521-4079(1998)33:4<555::aid-crat555>3.3.co;2-h
    [29]
    O. Renner, M. Kopecký, E. Krouský, E. Förster, T. Missalla, and J. S. Wark, “New methods of x-ray spectroscopy of laser-produced plasma with 1-D spatial resolution,” Laser Part. Beams 12, 539 (1994).10.1017/S0263034600008405 doi: 10.1017/S0263034600008405
    [30]
    O. Renner, P. K. Patel, J. S. Wark, E. Krousky, P. E. Young, and E. W. Lee, “Vertical variant of a double channel-cut crystal spectrometer for investigation of laser-generated plasma,” Rev. Sci. Instrum. 70, 3025 (1999).10.1063/1.1149863 doi: 10.1063/1.1149863
    [31]
    T. Missalla, I. Uschmann, E. Förster, G. Jenke, and D. von der Linde, “Monochromatic focusing of subpicosecond x-ray pulses in the keV range,” Rev. Sci. Instrum. 70, 1288 (1999).10.1063/1.1149587 doi: 10.1063/1.1149587
    [32]
    T. Johansson, “Über ein neuartiges, genau fokussierendes röntgenspektrometer,” ibid. 82, 507 (1933).10.1007/bf01342254 doi: 10.1007/bf01342254
    [33]
    O. Renner, P. Sondhauss, O. Peyrusse, E. Krouský, R. Ramis , “High-resolution measurements of x-ray emission from dense quasi-1D plasma: Line merging and profile modification,” Laser Part. Beams 17, 365 (1999).10.1017/s0263034699173038 doi: 10.1017/s0263034699173038
    [34]
    S. G. Podorov, O. Renner, O. Wehrhan, and E. Förster, “Optimized polychromatic x-ray imaging with asymmetrically bent crystals,” J. Phys. D: Appl. Phys. 34, 2363 (2001).10.1088/0022-3727/34/15/317 doi: 10.1088/0022-3727/34/15/317
    [35]
    N. Canestrari, O. Chubar, and M. Sanchez del Rio, “Improved models for synchrotron radiation sources in SHADOW,” J. Phys.: Conf. Ser. 425, 162007 (2013).10.1088/1742-6596/425/16/162007 doi: 10.1088/1742-6596/425/16/162007
    [36]
    N. Nakamura, “Crystal spectrometers,” in Highly Charged Ion Spectroscopic Research, edited by Y. Zou and R. Hutton (Taylor & Francis, 2012).
    [37]
    O. Renner, M. Kopecký, J. S. Wark, H. He, and E. Förster, “Vertical dispersion mode double-crystal spectrometer for advanced spectroscopy of LPP,” Rev. Sci. Instrum. 66, 3234 (1995).10.1063/1.1145488 doi: 10.1063/1.1145488
    [38]
    J. S. Wark, A. Djaoui, S. J. Rose, H. He, O. Renner , “The effect of velocity gradients on x-ray line transfer in laser-produced plasmas,” Phys. Rev. Lett. 72, 1826 (1994).10.1103/physrevlett.72.1826 doi: 10.1103/physrevlett.72.1826
    [39]
    P. K. Patel, J. S. Wark, D. J. Heading, A. Djaoui, S. Rose , “Simulation of x-ray line transfer in a cylindrically expanding plasma,” J. Quant. Spectrosc. Radiat. Transfer 57, 683 (1997).10.1016/s0022-4073(96)00126-4 doi: 10.1016/s0022-4073(96)00126-4
    [40]
    L. von Hamos, “Röntgenspektroskopie und abbildung mittels gekrümmter kristallreflektoren,” Z. Kristallogr. 101, 17 (1939).
    [41]
    B. Yaakobi, R. E. Turner, H. W. Schnopper, and P. O. Taylor, “Focusing x-ray spectrograph for laser fusion experiments,” Rev. Sci. Instrum. 50, 1609 (1979).10.1063/1.1135776 doi: 10.1063/1.1135776
    [42]
    L. Anklamm, C. Schlesiger, W. Malzer, D. Grötzsch, M. Neitzel , “A novel von Hamos spectrometer for efficient x-ray emission spectroscopy in the laboratory,” Rev. Sci. Instrum. 85, 053110 (2014).10.1063/1.4875986 doi: 10.1063/1.4875986
    [43]
    J. Szlachetko, M. Nachtegaal, E. de Boni, M. Willimann, O. Safronova , “A von Hamos x-ray spectrometer based on a segmented-type diffraction crystal for single-shot x-ray emission spectroscopy and time-resolved resonant inelastic x-ray scattering studies,” Rev. Sci. Instrum. 83, 103105 (2012).10.1063/1.4756691 doi: 10.1063/1.4756691
    [44]
    T. A. Hall, “A focusing x-ray crystal spectrograph,” J. Phys. E: Sci. Instrum. 17, 110 (1984).10.1088/0022-3735/17/2/007 doi: 10.1088/0022-3735/17/2/007
    [45]
    E. Martinolli, M. Koenig, J. M. Boudenne, E. Perelli, D. Batani, and T. A. Hall, “Conical crystal spectrograph for high brightness x-ray Kα spectroscopy in subpicosecond laser–solid interaction,” Rev. Sci. Instrum. 75, 2024 (2004).10.1063/1.1753098 doi: 10.1063/1.1753098
    [46]
    M. Bitter, K. W. Hill, L. Gao, P. C. Efthimion, L. Delgado-Apariccio , “A multi-cone x-ray imaging Bragg crystal spectrometer,” Rev. Sci. Instrum. 87, 11E333 (2016).10.1063/1.4960537 doi: 10.1063/1.4960537
    [47]
    O. Renner, T. Missalla, P. Sondhauss, E. Krouský, E. Förster , “High luminosity, high resolution x-ray spectroscopy of laser produced plasma by vertical geometry Johann spectrometer,” Rev. Sci. Instrum. 68, 2393 (1997).10.1063/1.1148123 doi: 10.1063/1.1148123
    [48]
    M. May, R. Heeter, and J. Emig, “Convex crystal x-ray spectrometer for laser plasma experiments,” Rev. Sci. Instrum. 75, 3740 (2004).10.1063/1.1781374 doi: 10.1063/1.1781374
    [49]
    D. B. Wittry, W. Z. Chang, and R. Y. Li, “X-ray optics of diffractors curved to a logarithmic spiral,” J. Appl. Phys. 74, 3534 (1993).10.1063/1.354531 doi: 10.1063/1.354531
    [50]
    B. L. Henke and P. A. Jaanimagi, “Two-channel, elliptical analyzer spectrograph for absolute, time-resolving time-integrating spectrometry of pulsed x-ray source in the 100-10000-eV region,” Rev. Sci. Instrum. 56, 1537 (1985).10.1063/1.1138150 doi: 10.1063/1.1138150
    [51]
    A. Hauer, N. D. Delamater, and Z. M. Koenig, “High resolution x-ray spectroscopic diagnostics of laser-heated and ICF plasmas,” Laser Part. Beams 9, 3 (1991).10.1017/s0263034600002329 doi: 10.1017/s0263034600002329
    [52]
    Y. Cauchois, “Spectrographie des rayons x par transmission d’un faisceau non canalise a travers un cristal courbe,” J. Phys. Radium 3, 320 (1932).10.1051/jphysrad:0193200307032000 doi: 10.1051/jphysrad:0193200307032000
    [53]
    J. F. Seely, L. T. Hudson, G. E. Holland, and A. Henins, “Enhanced x-ray resolving power achieved behind the focal circles of Cauchois spectrometers,” Appl. Opt. 47, 2767 (2008).10.1364/ao.47.002767 doi: 10.1364/ao.47.002767
    [54]
    J. Seely, G. E. Holland, L. T. Hudson, C. I. Szabo, A. Henins , “K-shell spectra from Ag, Sn, Sm, Ta, and Au generated by intense femtosecond laser pulses,” High Energy Density Phys. 3, 263 (2007).10.1016/j.hedp.2007.02.022 doi: 10.1016/j.hedp.2007.02.022
    [55]
    A. Ya. Faenov, S. A. Pikuz, A. I. Erko, B. A. Bryunetkin, V. M. Dyakin , “High-performance x-ray spectroscopic devices for plasma microsources investigations,” Phys. Scr. 50, 333 (1994).10.1088/0031-8949/50/4/003 doi: 10.1088/0031-8949/50/4/003
    [56]
    D. Batani, L. Antonelli, G. Folpini, Y. Maheut, L. Giuffrida , “Generation of high pressure shocks relevant to the shock-ignition intensity regime,” Phys. Plasmas 21, 032710 (2014).10.1063/1.4869715 doi: 10.1063/1.4869715
    [57]
    K. Jungwirth, A. Cejnarová, L. Juha, B. Králiková, J. Krása , “The Prague asterix laser system PALS,” Phys. Plasmas 8, 2495 (2001).10.1063/1.1350569 doi: 10.1063/1.1350569
    [58]
    T. Pisarczyk, S. Yu. Gus’kov, O. Renner, N. N. Demchenko, Z. Kalinowska , “Pre-plasma effect on laser beam energy transfer to a dense target under conditions relevant to shock ignition,” Laser Part. Beams 33, 221 (2015).10.1017/s0263034615000233 doi: 10.1017/s0263034615000233
    [59]
    K. W. D. Ledingham, P. McKenna, and R. P. Singhal, “Applications for nuclear phenomena generated by ultra-intense lasers,” Science 300, 1107 (2003).10.1126/science.1080552 doi: 10.1126/science.1080552
    [60]
    S. M. Gruner, E. F. Eikenberry, and M. W. Tate, “Comparison of x-ray detectors,” in International Tables for Crystallography Volume F: Crystallography of Biological Macromolecules. International Tables for Crystallography, edited by M. G. Rossmann and E. Arnold (Springer, Dordrecht 2006).
    [61]
    J. Howe, D. M. Chambers, C. Courtois, C. D. Gregory, I. M. Hall , “Comparison of film detectors, charged-coupled devices, and imaging plates in x-ray spectroscopy of hot dense plasma,” Rev. Sci. Instrum. 77, 036105 (2006).10.1063/1.2166515 doi: 10.1063/1.2166515
    [62]
    M. J. Yaffe and J. A. Rowlands, “X-ray detectors for digital radiography,” Phys. Med. Biol. 42, 1 (1997).10.1088/0031-9155/42/1/001 doi: 10.1088/0031-9155/42/1/001
    [63]
    L. Lodola, L. Ratti, D. Comotti, L. Fabris, M. Grassi , “A pixelated x-ray detector for diffraction imaging at next-generation high-rate FEL sources,” Proc. SPIE 10392, 103920D (2017).10.1117/12.2276966 doi: 10.1117/12.2276966
    [64]
    F. N. Chukhovskii and E. Forster, “Time-dependent x-ray Bragg-diffraction,” Acta Crystallogr., Sect. A: Found. Crystallogr. 51, 668 (1995).10.1107/s0108767395002509 doi: 10.1107/s0108767395002509
    [65]
    F. B. Rosmej, “Ionization potential depression in an atomic-solid-plasma picture,” Lett. J. Phys. B 51, 09LT01 (2018).10.1088/1361-6455/aab80f doi: 10.1088/1361-6455/aab80f
    [66]
    W. L. Kruer, The Physics of Laser Plasma Interactions (Addison-Wesley, Redwood City, 1988).
    [67]
    J. Lindl, O. Landen, J. Edwards, E. Moses , “Review of the national ignition campaign 2009-2012,” Phys. Plasmas 21, 020501 (2014).10.1063/1.4865400 doi: 10.1063/1.4865400
    [68]
    M. Tabak, P. Norreys, V. T. Tikhonchuk, and K. A. Tanaka, “Alternative ignition schemes in inertial confinement fusion,” Nucl. Fusion 54, 054001 (2014).10.1088/0029-5515/54/5/054001 doi: 10.1088/0029-5515/54/5/054001
    [69]
    M. Tabak, J. Hammer, M. E. Glinsky, W. L. Kruer, S. C. Wilks , Phys. Plasmas 1, 1626 (1994).10.1063/1.870664 doi: 10.1063/1.870664
    [70]
    R. Betti, C. D. Zhou, K. S. Anderson, L. J. Perkins, W. Theobald , “Shock ignition of thermonuclear fuel with high areal density,” Phys. Rev. Lett. 98, 155001 (2007).10.1103/physrevlett.98.155001 doi: 10.1103/physrevlett.98.155001
    [71]
    R. Nora, W. Theobald, R. Betti, F. J. Marshall, D. T. Michel , “Gigabar spherical shock generation on the OMEGA laser,” Phys. Rev. Lett. 114, 045001 (2015).10.1103/physrevlett.114.045001 doi: 10.1103/physrevlett.114.045001
    [72]
    E. Lior Aisa, X. Ribeyre, G. Duchateau, T. Nguyen-Bui, V. T. Tikhonchuk , “The role of hot electrons in the dynamics of a laser-driven strong converging shock,” Phys. Plasmas 24, 112711 (2017).10.1063/1.5003814 doi: 10.1063/1.5003814
    [73]
    W. Theobald, R. Nora, W. Seka, M. Lafon, K. S. Anderson , “Spherical strong-shock generation for shock-ignition inertial fusion,” Phys. Plasmas 22, 056310 (2015).10.1063/1.4920956 doi: 10.1063/1.4920956
    [74]
    E. Galtier, A. Moinard, F. Khattak, O. Renner, T. Robert , “High resolution x-ray imaging of K-alpha radiation induced by high intensity laser pulse interaction with a copper target,” J. Phys. B: At., Mol. Opt. Phys. 45, 205701 (2012).10.1088/0953-4075/45/20/205701 doi: 10.1088/0953-4075/45/20/205701
    [75]
    O. Renner, F. B. Rosmej, P. Adámek, E. Dalimier, A. Delserieys , “Spectroscopic characterization of ion collisions and trapping at laser irradiated double-foil targets,” High Energy Density Phys. 3, 211 (2007).10.1016/j.hedp.2007.02.036 doi: 10.1016/j.hedp.2007.02.036
    [76]
    F. B. Rosmej, V. S. Lisitsa, R. Schott, E. Dalimier, D. Riley , “Charge exchange driven x-ray emission from highly ionized plasma jets,” Europhys. Lett. 76, 815 (2006).10.1209/epl/i2006-10362-7 doi: 10.1209/epl/i2006-10362-7
    [77]
    F. B. Rosmej and V. S. Lisitsa, “A self-consistent method for the determination of neutral density from x-ray impurity spectra,” Phys. Lett. A 244, 401 (1998).10.1016/s0375-9601(98)00329-6 doi: 10.1016/s0375-9601(98)00329-6
    [78]
    F. B. Rosmej, V. S. Lisitsa, D. Reiter, M. Bitter, O. Herzog , “Influence of charge exchange processes on x-ray spectra in tokamak plasmas: Experimental and theoretical investigation,” Plasma Phys. Controlled Fusion 41, 191 (1999).10.1088/0741-3335/41/2/004 doi: 10.1088/0741-3335/41/2/004
    [79]
    F. B. Rosmej, R. Stamm, and V. S. Lisitsa, “Convergent coupling of helium to the H/D background in magnetically confined plasmas,” Europhys. Lett. 73, 342 (2006).10.1209/epl/i2005-10405-7 doi: 10.1209/epl/i2005-10405-7
    [80]
    F. B. Rosmej, V. S. Lisitsa, and V. A. Astapenko, Plasma Atomic Physics (Springer, Springer Series on Atomic, Optical and Plasma Physics, Heidelberg, 2019).
    [81]
    O. Renner, R. Liska, and F. B. Rosmej, “Laser–produced plasma–wall interaction,” Laser Part. Beams 27, 725 (2009).10.1017/s0263034609990504 doi: 10.1017/s0263034609990504
    [82]
    Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Dover Publications, Mineola, NY, 2002), pp. 762–770.
    [83]
    J. Burgdörfer, P. Lerner, and F. W. Meyer, “Above-surface neutralization of highly charged ions: The classical over-the-barrier model,” Phys. Rev. A 44, 5674 (1991).10.1103/physreva.44.5674 doi: 10.1103/physreva.44.5674
    [84]
    H. Winter and F. Aumayr, “Hollow atoms,” J. Phys. B: At., Mol. Opt. Phys. 32, R39 (1999).10.1088/0953-4075/32/7/005 doi: 10.1088/0953-4075/32/7/005
    [85]
    E. Dalimier, E. Oks, O. Renner, and R. Schott, “Experimental determination of rate coefficients of charge exchange from x-dips in laser-produced plasmas,” J. Phys. B: At., Mol. Opt. Phys. 40, 909 (2007).10.1088/0953-4075/40/5/007 doi: 10.1088/0953-4075/40/5/007
    [86]
    O. Renner, T. Pisarczyk, T. Chodukowski, Z. Kalinowska, E. Krouský , “Plasma-wall interaction studies with optimized laser-produced jets,” Phys. Plasmas 18, 093503 (2011).10.1063/1.3626944 doi: 10.1063/1.3626944
    [87]
    O. Renner, E. Dalimier, R. Liska, E. Oks, and M. Šmíd, “Charge exchange signatures in x-ray line emission accompanying plasma-wall interaction,” J. Phys.: Conf. Ser. 397, 012017 (2012).10.1088/1742-6596/397/1/012017 doi: 10.1088/1742-6596/397/1/012017
    [88]
    F. B. Rosmej, A. Ya. Faenov, T. A. Pikuz, I. Yu. Skobelev, A. E. Stepanov , “Dominant role of dielectronic satellites in the radiation spectra of a laser plasma near the target surface,” J. Exp. Theor. Phys. Lett. 65, 708 (1997).10.1134/1.567413 doi: 10.1134/1.567413
    [89]
    F. B. Rosmej, A. Ya. Faenov, T. A. Pikuz, F. Flora, P. Di Lazzaro , “Innershell satellite transitions in dense short pulse plasmas,” J. Quant. Spectrosc. Radiat. Transfer 58, 859 (1997).10.1016/s0022-4073(97)00092-7 doi: 10.1016/s0022-4073(97)00092-7
    [90]
    F. B. Rosmej, A. Ya. Faenov, T. A. Pikuz, F. Flora, P. Di Lazzaro , “Line formation of high intensity Heβ-Rydberg dielectronic satellites 1s3lnl' in laser produced plasmas,” J. Phys. B: At., Mol. Opt. Phys. 31, L921 (1998).10.1088/0953-4075/31/21/005 doi: 10.1088/0953-4075/31/21/005
    [91]
    O. Renner, E. Krouský, F. B. Rosmej, P. Sondhauss, I. Uschmann , “Overcritical density plasma diagnosis inside laser-produced craters,” Appl. Phys. Lett 79, 177 (2001).10.1063/1.1381413 doi: 10.1063/1.1381413
    [92]
    L. A. Woltz, V. L. Jacobs, C. F. Hooper, Jr., and R. C. Mancini, “Effects of electric microfields on argon dielectronic satellite spectra in laser-produced plasmas,” Phys. Rev. A 44, 1281 (1991).10.1103/physreva.44.1281 doi: 10.1103/physreva.44.1281
    [93]
    D. E. Kelleher and J. Cooper, “Shifts of ion lines in plasmas,” in Spectral Line Shapes (Walter de Gruyter, Berlin and New York, 1985), Vol. 3, p. 85.
    [94]
    M. Koenig, P. Malnoult, and H. Nguyen, “Atomic structure and line broadening of He-like ions in hot and dense plasmas,” Phys. Rev. A 38, 2089 (1988).10.1103/physreva.38.2089 doi: 10.1103/physreva.38.2089
    [95]
    O. Renner, P. Sondhauss, D. Salzmann, A. Djaoui, M. Koenig , “Measurement of the polarization shifts in hot and dense aluminum plasma,” J. Quant. Spectrosc. Radiat. Transfer 58, 851 (1997).10.1016/s0022-4073(97)00091-5 doi: 10.1016/s0022-4073(97)00091-5
    [96]
    A. Saemann, K. Eidmann, I. E. Golovkin, R. C. Mancini, E. Andersson , “Isochoric heating of solid aluminum by ultrashort laser pulses focused on a tamped target,” Phys. Rev. Lett. 82, 4843 (1999).10.1103/physrevlett.82.4843 doi: 10.1103/physrevlett.82.4843
    [97]
    N. C. Woolsey, C. A. Back, R. W. Lee, A. Calisti, C. Mosse , “Experimental results on line shifts from dense plasmas,” J. Quant. Spectrosc. Radiat. Transfer 65, 573 (2000).10.1016/s0022-4073(99)00096-5 doi: 10.1016/s0022-4073(99)00096-5
    [98]
    O. Renner, P. Adámek, P. Angelo, E. Dalimier, E. Förster , “Spectral line decomposition and frequency shifts in Al Heα group emission from laser produced plasmas,” J. Quant. Spectrosc. Radiat. Transfer 99, 523 (2006).10.1016/j.jqsrt.2005.05.042 doi: 10.1016/j.jqsrt.2005.05.042
    [99]
    X. Li, Z. Xu, and F. B. Rosmej, “Exchange energy shifts under dense plasma conditions,” J. Phys. B: At., Mol. Opt. Phys. 39, 3373 (2006).10.1088/0953-4075/39/16/019 doi: 10.1088/0953-4075/39/16/019
    [100]
    V. Dervieux, B. Loupias, S. Baton, L. Lecherbourg, K. Glize , “Characterization of near-LTE, high-temperature and high-density aluminum plasmas produced by ultra-high intensity lasers,” High Energy Density Phys. 16, 12 (2015).10.1016/j.hedp.2015.04.009 doi: 10.1016/j.hedp.2015.04.009
    [101]
    C. R. Stillman, P. M. Nilson, S. T. Ivancic, I. E. Golovkin, C. Mileham , “Picosecond time-resolved measurements of dense plasma line shifts,” Phys. Rev. E 95, 063204 (2017).10.1103/physreve.95.063204 doi: 10.1103/physreve.95.063204
    [102]
    P. Adámek, O. Renner, L. Drska, F. B. Rosmej, and J. F. Wyart, “Genetic algorithms in spectroscopic diagnostics of hot dense plasmas,” Laser Part. Beams 24, 511 (2006).10.1017/s0263034606060678 doi: 10.1017/s0263034606060678
    [103]
    O. Renner, F. B. Rosmej, E. Krouský, P. Sondhauss, M. P. Kalachnikov , “Overcritical density plasma diagnosis inside the laser-produced craters,” Appl. Phys. Lett. 79, 177 (2001).10.1063/1.1381413 doi: 10.1063/1.1381413
    [104]
    E. Oks, Plasma Spectroscopy: The Influence of Microwave and Laser Fields (Springer, NY, 1995).
    [105]
    O. Peyrusse, “Stark-profile calculations for spectral lines of hydrogenic ions in plasmas submitted to a strong oscillating electric field,” Phys. Scr. 56, 371 (1997).10.1088/0031-8949/56/4/007 doi: 10.1088/0031-8949/56/4/007
    [106]
    O. Renner, P. Sauvan, E. Dalimier, C. Riconda, F. B. Rosmej , “Signature of externally introduced laser fields in x-ray emission of multicharged ions,” High Energy Density Phys. 5, 139 (2009).10.1016/j.hedp.2009.04.013 doi: 10.1016/j.hedp.2009.04.013
    [107]
    E. Stambulchik, K. Tsigutkin, and Y. Maron, “Spectroscopic method for measuring plasma magnetic fields having arbitrary distributions of direction and amplitude,” Phys. Rev. Lett. 98, 225001 (2007).10.1103/physrevlett.98.225001 doi: 10.1103/physrevlett.98.225001
    [108]
    S. Ferri, A. Calisti, C. Mossé, L. Mouret, B. Talin , “Frequency-fluctuation model applied to Stark-Zeeman spectral line shapes in plasmas,” Phys. Rev. E 84, 026407 (2011).10.1103/physreve.84.026407 doi: 10.1103/physreve.84.026407
    [109]
    E. Stambulchik and Y. Maron, “Zeeman effect induced by intense laser light,” Phys. Rev. Lett. 113, 083002 (2014).10.1103/physrevlett.113.083002 doi: 10.1103/physrevlett.113.083002
    [110]
    F. B. Rosmej, U. N. Funk, M. Geißel, D. H. H. Hoffmann, A. Tauschwitz , “X-ray radiation from ions with K-shell vacancies,” J. Quant. Spectrosc. Radiat. Transfer 65, 477 (2000).10.1016/s0022-4073(99)00091-6 doi: 10.1016/s0022-4073(99)00091-6
    [111]
    S. X. Hu, “Continuum lowering and Fermi surface-rising in strongly coupled and degenerate plasmas,” Phys. Rev. Lett. 119, 065001 (2017).10.1103/physrevlett.119.065001 doi: 10.1103/physrevlett.119.065001
    [112]
    D. Khaghani, M. Lobet, B. Borm, L. Burr, F. Gärtner , “Enhancing laser-driven proton acceleration by using micro-pillar arrays at high drive energy,” Sci. Rep. 7, 11366 (2017).10.1038/s41598-017-11589-z doi: 10.1038/s41598-017-11589-z
    [113]
    A. Colaïtis, G. Cuchateau, X. Ribeyre, Y. Maheut, G. Boutoux , “Coupled hydrodynamic model for laser-plasma interaction and hot electron generation,” Phys. Rev. E 92, 041101(R) (2015).10.1103/physreve.92.041101 doi: 10.1103/physreve.92.041101
    [114]
    [115]
    E. Galtier, F. B. Rosmej, D. Riley, T. Dzelzainis, F. Y. Khattak , “Decay of cystalline order and equilibration during the solid-to-plasma transition induced by 20-fs microfocused 92-ev free-electron-laser pulses,” Phys. Rev. Lett. 106, 164801 (2011).10.1103/physrevlett.106.164801 doi: 10.1103/physrevlett.106.164801
    [116]
    B. Deschaud, O. Peyrusse, and F. B. Rosmej, “Generalized atomic processes for interaction of intense femtosecond XUV- and x-ray radiation with solids,” Europhys. Lett. 108, 53001 (2014).10.1209/0295-5075/108/53001 doi: 10.1209/0295-5075/108/53001
    [117]
    B. Deschaud, O. Peyrusse, and F. B. Rosmej, “Atomic kinetics for isochoric heating of solid aluminum under short intense XUV free electron laser irradiation,” High Energy Density Phys. 15, 22 (2015).10.1016/j.hedp.2015.03.007 doi: 10.1016/j.hedp.2015.03.007
    [118]
    [119]
    F. Petitdemange and F. B. Rosmej, “Dielectronic satellites and auger electron heating: Irradiation of solids by intense XUV-free electron laser radiation,” in New Trends in Atomic and Molecular Physics: Advanced Technological Applications, edited by M. Mohan (Springer, 2013), Vol. 76, p. 91–114, ISBN: 978-3-642-38166-9.
    [120]
    F. B. Rosmej and R. W. Lee, “Hollow ion emission driven by pulsed intense x-ray fields,” Europhys. Lett. 77, 24001 (2007).10.1209/0295-5075/77/24001 doi: 10.1209/0295-5075/77/24001
    [121]
    F. B. Rosmej, R. W. Lee, and D. H. G. Schneider, “Fast x-ray emission switches driven by intense x-ray free electron laser radiation,” High Energy Density Phys. 3, 218 (2007).10.1016/j.hedp.2007.02.028 doi: 10.1016/j.hedp.2007.02.028
    [122]
    F. B. Rosmej, “A new type of analytical model for complex radiation emission of hollow ions in fusion, laser and heavy-ion-beam-produced plasmas,” Europhys. Lett. 55, 472 (2001).10.1209/epl/i2001-00439-9 doi: 10.1209/epl/i2001-00439-9
    [123]
    F. B. Rosmej, “An alternative method to determine atomic radiative emission,” Europhys. Lett. 76, 1081 (2006).10.1209/epl/i2006-10382-3 doi: 10.1209/epl/i2006-10382-3
    [124]
    O. Ciricosta, S. M. Vinko, B. Barbrel, D. S. Rackstraw, T. R. Preston , “Measurements of continuum lowering in solid-density plasmas created from elements and compounds,” Nat. Commun. 7, 11713 (2016).10.1038/ncomms11713 doi: 10.1038/ncomms11713
    [125]
    J. Stewart and K. Pyatt K, “Lowering of ionization potentials in plasmas,” Astrophys. J. 144, 1203 (1996).10.1086/148714 doi: 10.1086/148714
    [126]
    O. Ciricosta, S. M. Vinko, H.-K. Chung, B. I. Cho, C. R. D. Brown , “Direct measurements of the ionization potential depression in a dense plasma,” Phys. Rev. Lett. 109, 065002 (2012).10.1103/physrevlett.109.065002 doi: 10.1103/physrevlett.109.065002
    [127]
    G. Ecker and W. Kröll, “Lowering of the ionization energy for a plasma in thermodynamic equilibrium,” Phys. Fluids 6, 62 (1963).10.1063/1.1724509 doi: 10.1063/1.1724509
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(26)  / Tables(1)

    Article Metrics

    Article views (707) PDF downloads(12) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return