Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 4 Issue 2
Mar.  2019
Turn off MathJax
Article Contents
Wang Longxiao, Wang Yun, Ma Xianxian, Zhao Weiqian. Measurement of laser differential confocal geometrical parameters for ICF capsule[J]. Matter and Radiation at Extremes, 2019, 4(2): 025401. doi: 10.1063/1.5085863
Citation: Wang Longxiao, Wang Yun, Ma Xianxian, Zhao Weiqian. Measurement of laser differential confocal geometrical parameters for ICF capsule[J]. Matter and Radiation at Extremes, 2019, 4(2): 025401. doi: 10.1063/1.5085863

Measurement of laser differential confocal geometrical parameters for ICF capsule

doi: 10.1063/1.5085863
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: alotrabbits@163.com
  • Received Date: 2018-06-01
  • Accepted Date: 2018-08-30
  • Available Online: 2021-04-13
  • Publish Date: 2019-03-15
  • A method based on the laser differential confocal principle is proposed for measurement of the uniformity of the inner and outer radius and shell thickness for an inertial confinement fusion (ICF) capsule. Firstly, this method uses the laser differential confocal measurement system (LDCS) driven by a precision air-bearing slide to scan and measure radially the outer radius, R, inner radius, r, and shell thickness, T, accurately. Secondly, a precision air-bearing rotation system is used to drive the capsule to rotate an angle, θ, in sequence, and the LDCS is used to measure R, r and T at the corresponding angle. Finally, the uniformity of the ICF capsule’s R, r and T can be calculated by the values of R, r and T measured at the position of each rotation angle. This method provides an approach for achieving high-precision, non-destructive, comprehensive, and rapid measurement of the uniformity of the inner and outer radius and shell thickness of an ICF capsule. Preliminary experiments indicate that measurement precision, using the proposed method for the uniformity of the outer radius, shell thickness and inner radius of the capsule, can reach 7.02 × 10−5, 5.87 × 10−4 and 6.52 × 10−5, respectively.
  • loading
  • [1]
    O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan , “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506, 343–348 (2014).10.1038/nature13008 doi: 10.1038/nature13008
    [2]
    G. Brumfiel, “Laser lab shifts focus to warheads,” Nature 491, 170–171 (2012).10.1038/491170a doi: 10.1038/491170a
    [3]
    R. Betti, V. N. Goncharov, R. L. McCrory, and C. P. Verdon, “Growth rates of the Rayleigh-Taylor instability in inertial confinement fusion,” Phys. Plasmas 5, 1446–1454 (1998).10.1063/1.872802 doi: 10.1063/1.872802
    [4]
    H. Huang, R. B. Stephens, D. W. Hill, C. Lyon, A. Nikroo , “Automated batch characterization of ICF shells with vision-enabled optical microscope system,” Fusion Sci. Technol. 45, 214–217 (2004).10.13182/fst04-a453 doi: 10.13182/fst04-a453
    [5]
    R. B. Stephens, D. A. Steinman, and M. L. Hoppe, “White light interferometry for the optical characterization of transparent ICF shells,” Fusion Sci. Technol. 49, 646–649 (2006).10.13182/fst06-a1180 doi: 10.13182/fst06-a1180
    [6]
    B. W. Weinstein, “White-Light interferometric measurement of the wall thickness of hollow glass microspheres,” Appl. Phys. 46, 5305–5306 (1975).10.1063/1.321565 doi: 10.1063/1.321565
    [7]
    B. W. Weinstein and C. D. Hendricks, “Interferometric measurement of laser fusion targets,” Appl. Opt. 17, 3641–3646 (1978).10.1364/ao.17.003641 doi: 10.1364/ao.17.003641
    [8]
    R. M. Singleton, B. W. Weinstein, and C. D. Hendricks, “X-ray measurement of laser fusion targets using least squares fitting,” Appl. Opt. 18, 4116–4123 (1979).10.1364/ao.18.004116 doi: 10.1364/ao.18.004116
    [9]
    D. Yang, X. Yu, and D. Gong, “Image analyses of ICF target by X-ray measurement,” High Power Laser Part. Beams 16, 1553–1557 (2004).
    [10]
    K. Wang, H. Lei, J. Li, W. Lin, X. Qi , “Characterization of inertial confinement fusion targets using X-ray phase contrast imaging,” Opt. Commun. 332, 9–13 (2014).10.1016/j.optcom.2014.06.066 doi: 10.1016/j.optcom.2014.06.066
    [11]
    J. Yan, S. Jiang, M. Su, S. Wu, and Z. Lin, “The application of phase contrast imaging to ICF multi-shell capsule diagnosis,” Acta Phys. Sin. 61, 068703 (2012).10.7498/aps.61.068703 doi: 10.7498/aps.61.068703
    [12]
    Z. Wang, X. Ma, J. Meng, Q. Wang, and D. Gao, “Three-dimensional thickness reconstruction of ICF shells using X-ray tomography,” Fusion Eng. Des. 100, 525–530 (2015).10.1016/j.fusengdes.2015.07.030 doi: 10.1016/j.fusengdes.2015.07.030
    [13]
    S. A. Eddinger, R. B. Stephens, H. Huang, T. J. Drake, A. Nikroo , “Precision X-ray optical depth measurements in ICF shells,” Fusion Sci. Technol. 51, 525–529 (2007).10.13182/fst51-525 doi: 10.13182/fst51-525
    [14]
    M. Born and E. Wolf, Principles of Optics, 7th (expanded) ed. (Cambrige University, London, 1999).
    [15]
    W. Zhao, J. Tan, and L. Qiu, “Bipolar absolute differential confocal approach to higher spatial resolution, Opt. Express 12, 5013–5021 (2004).10.1364/opex.12.005013 doi: 10.1364/opex.12.005013
    [16]
    L. Cao and B. Wang, Roundness Measurement and Verification Techniques (National Defense Industry, Beijing, 1998).
    [17]
    M. Liu, S. Chen, Y. Liu, L. Su, R. Shi , “Characterization of sphericity and wall thickness uniformity of thick-walled hollow microspheres,” High Power Laser Part. Beams 26, 22017 (2014).10.3788/hplpb20142602.22017 doi: 10.3788/hplpb20142602.22017
    [18]
    T. R. Corle and G. S Kino, Confocal Scanning Optical Microscopy and Related Imaging Systems (Academic, New York, 1996), p. 37.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(2)

    Article Metrics

    Article views (142) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return