Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 4 Issue 2
Mar.  2019
Turn off MathJax
Article Contents
Romanova V. M., Mingaleev A. R., Ter-Oganesyan A. E., Shelkovenko T. A., Ivanenkov G. V., Pikuz S. A.. Core structure and secondary breakdown of an exploding wire in the current-pause regime[J]. Matter and Radiation at Extremes, 2019, 4(2): 026401. doi: 10.1063/1.5085487
Citation: Romanova V. M., Mingaleev A. R., Ter-Oganesyan A. E., Shelkovenko T. A., Ivanenkov G. V., Pikuz S. A.. Core structure and secondary breakdown of an exploding wire in the current-pause regime[J]. Matter and Radiation at Extremes, 2019, 4(2): 026401. doi: 10.1063/1.5085487

Core structure and secondary breakdown of an exploding wire in the current-pause regime

doi: 10.1063/1.5085487
  • Received Date: 2018-06-26
  • Accepted Date: 2018-09-11
  • Available Online: 2021-04-13
  • Publish Date: 2019-03-15
  • The results of experiments with rapidly exploding thin conductors in the current-pause regime are presented. Copper wires 25 μm in diameter and 12 mm in length serve as loads for a GVP pulsed generator based on a low-inductance capacitor. The generator produces current pulses of up to 10 kA with dI/dt up to 50 A/ns. A 100–800-ns current-pause regime is obtained for charging voltages of 10–15 kV. The discharge channel structure is studied by shadow photography using 0.53-μm, 10-ns second-harmonic pulses from a Nd3+:YAG laser. In the experiments, three types of secondary breakdown are observed, with different symmetry types, different current-pause durations, and different dependences on the energy deposited into the wire during its resistive heating. All of these breakdown types develop inside a tubular core that is produced in the current-pause stage and that remains almost undamaged by the breakdown.
  • loading
  • [1]
    J. Wrana, Arch. Elektrotech. 33, 656 (1939).10.1007/bf01656418 doi: 10.1007/bf01656418
    [2]
    N. N. Sobolev, J. Expt. Theor. Phys. USSR 17, 986 (1947).
    [3]
    I. F. Kvartskhava, A. A. Pliutto, A. A. Chernov, and V. V. Bondarenko, Sov. Phys. JEPT 8(1), 40–51 (1956).
    [4]
    H. F. Webb, H. Hilton, P. H. Levine, and A. V. Tollestrup, in Exploding Wires, edited by W. G. Chace and H. K. Moore (Plenum Press, New York, 1962), Vol. 2, pp. 37–75.
    [5]
    S. M. Karakhanov, Sov. Phys. Tech. Phys. 23, 832 (1978).
    [6]
    V. M. Romanova, G. V. Ivanenkov, A. R. Mingaleev, A. E. Ter-Oganesyan, T. A. Shelkovenko, and S. A. Pikuz, Plasma Phys. Rep. 41(8), 617–636 (2015).10.1134/s1063780x15080085 doi: 10.1134/s1063780x15080085
    [7]
    S. I. Tkachenko, D. V. Barishpoltsev, G. V. Ivanenkov, V. M. Romanova, A. E. Ter-Oganesyan, A. R. Mingaleev, T. A. Shelkovenko, and S. A. Pikuz, Phys. Plasmas 14(12), 123502 (2007).10.1063/1.2817961 doi: 10.1063/1.2817961
    [8]
    G. V. Ivanenkov, S. Yu. Gus’kov, and D. V. Barishpol’tsev, Plasma Phys. Rep. 36(1), 67–76 (2010).10.1134/s1063780x10010058 doi: 10.1134/s1063780x10010058
    [9]
    A. Vlastos, J. Appl. Phys. 38, 4993–4998 (1967).10.1063/1.1709266 doi: 10.1063/1.1709266
    [10]
    L. Bilbao and G. R. Prieto, Appl. Sci. 7, 829 (2017).10.3390/app7080829 doi: 10.3390/app7080829
    [11]
    G. Yin, X. Li, and S. Jia, IEEE Trans. Plasma Sci. 46(4), 972 (2018).10.1109/tps.2018.2805351 doi: 10.1109/tps.2018.2805351
    [12]
    K.-J. Chung, K. Lee, Y. S. Hwang, and D.-K. Kim, J. Appl. Phys. 120, 203301 (2016).10.1063/1.4968396 doi: 10.1063/1.4968396
    [13]
    W. Muller, in Exploding Wires, edited by W. G. Chace and H. K. Moore (Plenum Press, New York, 1959), Vol. 1, pp. 186–208.
    [14]
    T. Korneff and W. G. Chace, Rev. Sci. Instrum. 42, 1184 (1971).10.1063/1.1685338 doi: 10.1063/1.1685338
    [15]
    S. A. Pikuz, T. A. Shelkovenko, C. L. Hoyt, J. D. Douglass, I. N. Tilikin, A. R. Mingaleev, V. M. Romanova, and D. A. Hammer, IEEE Trans. Plasma Sci. 43(8), 2520–2526 (2015).10.1109/tps.2015.2440101 doi: 10.1109/tps.2015.2440101
    [16]
    V. V. Zhakhovsky, S. A. Pikuz, S. I. Tkachenko, P. V. Sasorov, T. A. Shelkovenko, P. F. Knapp, Ch. C. Saylor, and D. A. Hammer, AIP Conf. Proc. 1426, 1207 (2012).10.1063/1.3686497 doi: 10.1063/1.3686497
    [17]
    V. M. Romanova, G. V. Ivanenkov, A. R. Mingaleev, A. E. Ter-Oganesyan, I. N. Tilikin, T. A. Shelkovenko, and S. A. Pikuz, Phys. Plasmas 25, 112704 (2018).10.1063/1.5052549 doi: 10.1063/1.5052549
    [18]
    E. V. Parkevich, S. I. Tkachenko, A. V. Agafonov, A. R. Mingaleev, V. M. Romanova, T. A. Shelkovenko, and S. A. Pikuz, J. Expt. Theor. Phys. 124, 531–539 (2017).10.1134/s1063776117030074 doi: 10.1134/s1063776117030074
    [19]
    S. V. Lebedev and A. I. Savvatimskii, High Temperature 494–500 (1970).
    [20]
    A. Vlastos, J. Appl. Phys. 39(7), 3081–3087 (1968).10.1063/1.1656736 doi: 10.1063/1.1656736
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views (159) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return