Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 4 Issue 1
Jan.  2019
Turn off MathJax
Article Contents
Zhu Xing-Long, Chen Min, Yu Tong-Pu, Weng Su-Ming, He Feng, Sheng Zheng-Ming. Collimated GeV attosecond electron–positron bunches from a plasma channel driven by 10 PW lasers[J]. Matter and Radiation at Extremes, 2019, 4(1): 014401. doi: 10.1063/1.5083914
Citation: Zhu Xing-Long, Chen Min, Yu Tong-Pu, Weng Su-Ming, He Feng, Sheng Zheng-Ming. Collimated GeV attosecond electron–positron bunches from a plasma channel driven by 10 PW lasers[J]. Matter and Radiation at Extremes, 2019, 4(1): 014401. doi: 10.1063/1.5083914

Collimated GeV attosecond electron–positron bunches from a plasma channel driven by 10 PW lasers

doi: 10.1063/1.5083914
  • Received Date: 2018-07-30
  • Accepted Date: 2018-10-28
  • Available Online: 2021-04-13
  • Publish Date: 2019-01-15
  • High-energy positrons and bright γ-ray sources are of great importance both in fundamental research and for practical applications. However, collimated GeV electron–positron pair jets and γ-ray flashes are still rarely produced in the laboratory. Here, we demonstrate that by irradiating a near-critical-density plasma channel with two 10 PW-scale laser pulses, highly directional GeV electron–positron pairs and bright γ-ray beams can be efficiently generated. Three-dimensional particle-in-cell simulations show the formation of GeV positron jets with high density (8×1021/ cm3), attosecond duration (400 as), and a divergence angle of 14°. Additionally, ultrabright [2×1025 photons s1 mm2 mrad2(0.1% bandwidth)1] collimated attosecond (370 as) γ-ray flashes with a laser energy conversion efficiency of 5.6% are emitted. These features show the significant advantage of using a plasma channel as compared with a uniform plasma and thus open up new possibilities for a wide variety of applications.
  • loading
  • [1]
    C. D. Anderson, “The positive electron,” Phys. Rev. 43, 491 (1933).10.1103/physrev.43.491 doi: 10.1103/physrev.43.491
    [2]
    R. Ruffini, G. Vereshchagin, and S.-S. Xue, “Electron–positron pairs in physics and astrophysics: From heavy nuclei to black holes,” Phys. Rep. 487, 1 (2010).10.1016/j.physrep.2009.10.004 doi: 10.1016/j.physrep.2009.10.004
    [3]
    J. R. Danielson, D. H. E. Dubin, R. G. Greaves, and C. M. Surko, “Plasma and trap-based techniques for science with positrons,” Rev. Mod. Phys. 87, 247 (2015).10.1103/revmodphys.87.247 doi: 10.1103/revmodphys.87.247
    [4]
    H. Chen et al., “Scaling the yield of laser-driven electron-positron jets to laboratory astrophysical applications,” Phys. Rev. Lett. 114, 215001 (2015).10.1103/physrevlett.114.215001 doi: 10.1103/physrevlett.114.215001
    [5]
    E. Liang et al., “High e+/e− ratio dense pair creation with 1021W.cm−2 laser irradiating solid targets,” Sci. Rep. 5, 13968 (2015).10.1038/srep13968 doi: 10.1038/srep13968
    [6]
    T. Xu et al., “Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons,” Phys. Plasmas 23, 033109 (2016).10.1063/1.4943280 doi: 10.1063/1.4943280
    [7]
    J. Warwick et al., “Experimental observation of a current-driven instability in a neutral electron-positron beam,” Phys. Rev. Lett. 119, 185002 (2017).10.1103/physrevlett.119.185002 doi: 10.1103/physrevlett.119.185002
    [8]
    G. Weidenspointner et al., “An asymmetric distribution of positrons in the Galactic disk revealed by γ-rays,” Nature 451, 159 (2008).10.1038/nature06490 doi: 10.1038/nature06490
    [9]
    O. Adriani et al., “An anomalous positron abundance in cosmic rays with energies 1.5–100 GeV,” Nature 458, 607 (2009).10.1038/nature07942 doi: 10.1038/nature07942
    [10]
    [11]
    [12]
    D. N. Papadopoulos et al., “The Apollon 10 PW laser: Experimental and theoretical investigation of the temporal characteristics,” High Power Laser Sci. Eng. 4, e34 (2016).10.1017/hpl.2016.34 doi: 10.1017/hpl.2016.34
    [13]
    L. Yu et al., “High-contrast front end based on cascaded XPWG and femtosecond OPA for 10-PW-level Ti:sapphire laser,” Opt. Express 26, 2625 (2018).10.1364/oe.26.002625 doi: 10.1364/oe.26.002625
    [14]
    A. Di Piazza, C. Müller, K. Z. Hatsagortsyan, and C. H. Keitel, “Extremely high-intensity laser interactions with fundamental quantum systems,” Rev. Mod. Phys. 84, 1177 (2012).10.1103/revmodphys.84.1177 doi: 10.1103/revmodphys.84.1177
    [15]
    S. Bulanov, T. Z. Esirkepov, M. Kando, J. Koga, K. Kondo, and G. Korn, “On the problems of relativistic laboratory astrophysics and fundamental physics with super powerful lasers,” Plasma Phys. Rep. 41, 1 (2015).10.1134/s1063780x15010018 doi: 10.1134/s1063780x15010018
    [16]
    I. C. E. Turcu et al., “High field physics and QED experiments at ELI-NP,” Rom. Rep. Phys. 68, S145 (2016), http://www.eli-np.ro/scientific-papers/S145.pdf.
    [17]
    S. Gales et al., “The extreme light infrastructure-nuclear physics (ELI-NP) facility: new horizons in physics with 10 PW ultra-intense lasers and 20 MeV brilliant gamma beams,” Rep. Prog. Phys. 81, 094301 (2018).10.1088/1361-6633/aacfe8 doi: 10.1088/1361-6633/aacfe8
    [18]
    G. Breit and J. A. Wheeler, “Collision of two light quanta,” Phys. Rev. 46, 1087 (1934).10.1103/physrev.46.1087 doi: 10.1103/physrev.46.1087
    [19]
    X.-L. Zhu, T.-P. Yu, Z.-M. Sheng, Y. Yin, I. C. E. Turcu, and A. Pukhov, “Dense GeV electron–positron pairs generated by lasers in near-critical-density plasmas,” Nat. Commun. 7, 13686 (2016).10.1038/ncomms13686 doi: 10.1038/ncomms13686
    [20]
    Y. J. Gu, O. Klimo, S. Weber, and G. Korn, “High density ultrashort relativistic positron beam generation by laser-plasma interaction,” New J. Phys. 18, 113023 (2016).10.1088/1367-2630/18/11/113023 doi: 10.1088/1367-2630/18/11/113023
    [21]
    T. Grismayer, M. Vranic, J. L. Martins, R. A. Fonseca, and L. O. Silva, “Laser absorption via quantum electrodynamics cascades in counter propagating laser pulses,” Phys. Plasmas 23, 056706 (2016).10.1063/1.4950841 doi: 10.1063/1.4950841
    [22]
    H.-Z. Li, T.-P. Yu, J.-J. Liu, Y. Yin, X.-L. Zhu, R. Capdessus, F. Pegoraro, Z.-M. Sheng, P. McKenna, and F.-Q. Shao, “Ultra-bright γ-ray emission and dense positron production from two laser-driven colliding foils,” Sci. Rep. 7, 17312 (2017).10.1038/s41598-017-17605-6 doi: 10.1038/s41598-017-17605-6
    [23]
    D. D. Sorbo et al., “Efficient ion acceleration and dense electron–positron plasma creation in ultra-high intensity laser-solid interactions,” New J. Phys. 20, 033014 (2018).10.1088/1367-2630/aaae61 doi: 10.1088/1367-2630/aaae61
    [24]
    X.-L. Zhu, T.-P. Yu, M. Chen, S.-M. Weng, and Z.-M. Sheng, “Generation of GeV positron and γ-photon beams with controllable angular momentum by intense lasers,” New J. Phys. 20, 083013 (2018).10.1088/1367-2630/aad71a doi: 10.1088/1367-2630/aad71a
    [25]
    J. Y. Yu, T. Yuan, W. Y. Liu, M. Chen, W. Luo, S. M. Weng, and Z. M. Sheng, “QED effects induced harmonics generation in extreme intense laser foil interaction,” Plasma Phys. Controlled Fusion 60, 044011 (2018).10.1088/1361-6587/aaae35 doi: 10.1088/1361-6587/aaae35
    [26]
    M. Lobet, X. Davoine, E. d’Humières, and L. Gremillet, “Generation of high-energy electron-positron pairs in the collision of a laser-accelerated electron beam with a multipetawatt laser,” Phys. Rev. Accel. Beams 20, 043401 (2017).10.1103/physrevaccelbeams.20.043401 doi: 10.1103/physrevaccelbeams.20.043401
    [27]
    T. G. Blackburn, A. Ilderton, C. D. Murphy, and M. Marklund, “Scaling laws for positron production in laser-electron-beam collisions,” Phys. Rev. A 96, 022128 (2017).10.1103/physreva.96.022128 doi: 10.1103/physreva.96.022128
    [28]
    M. Vranic, O. Klimo, G. Korn, and S. Weber, “Multi-GeV electron-positron beam generation from laser-electron scattering,” Sci. Rep. 8, 4702 (2018).10.1038/s41598-018-23126-7 doi: 10.1038/s41598-018-23126-7
    [29]
    F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81, 163 (2009).10.1103/revmodphys.81.163 doi: 10.1103/revmodphys.81.163
    [30]
    F. Y. Li, Z. M. Sheng, Y. Liu, J. Meyer-ter-Vehn, W. B. Mori, W. Lu, and J. Zhang, “Dense attosecond electron sheets from laser wakefields using an up-ramp density transition,” Phys. Rev. Lett. 110, 135002 (2013).10.1103/physrevlett.110.135002 doi: 10.1103/physrevlett.110.135002
    [31]
    J.-X. Li, K. Z. Hatsagortsyan, B. J. Galow, and C. H. Keitel, “Attosecond gamma-ray pulses via nonlinear Compton scattering in the radiation-dominated regime,” Phys. Rev. Lett. 115, 204801 (2015).10.1103/physrevlett.115.204801 doi: 10.1103/physrevlett.115.204801
    [32]
    X.-L. Zhu, M. Chen, T.-P. Yu, S.-M. Weng, L.-X. Hu, P. McKenna, and Z.-M. Sheng, “Bright attosecond γ-ray pulses from nonlinear Compton scattering with laser-illuminated compound targets,” Appl. Phys. Lett. 112, 174102 (2018).10.1063/1.5028555 doi: 10.1063/1.5028555
    [33]
    C. Bula et al., “Observation of nonlinear effects in Compton scattering,” Phys. Rev. Lett. 76, 3116 (1996).10.1103/physrevlett.76.3116 doi: 10.1103/physrevlett.76.3116
    [34]
    T. D. Arber et al., “Contemporary particle-in-cell approach to laser-plasma modelling,” Plasma Phys. Controlled Fusion 57, 113001 (2015).10.1088/0741-3335/57/11/113001 doi: 10.1088/0741-3335/57/11/113001
    [35]
    R. Duclous, J. G. Kirk, and A. R. Bell, “Monte Carlo calculations of pair production in high-intensity laser–plasma interactions,” Plasma Phys. Controlled Fusion 53, 015009 (2011).10.1088/0741-3335/53/1/015009 doi: 10.1088/0741-3335/53/1/015009
    [36]
    C. P. Ridgers, J. G. Kirk, R. Duclous, T. G. Blackburn, C. S. Brady, K. Bennett, T. D. Arber, and A. R. Bell, “Modelling gamma-ray photon emission and pair production in high-intensity laser–matter interactions,” J. Comput. Phys. 260, 273 (2014).10.1016/j.jcp.2013.12.007 doi: 10.1016/j.jcp.2013.12.007
    [37]
    V. Yanovsky et al., “Ultra-high intensity-300-TW laser at 0.1 Hz repetition rate,” Opt. Express 16, 2109 (2008).10.1364/oe.16.002109 doi: 10.1364/oe.16.002109
    [38]
    X.-L. Zhu, Y. Yin, T.-P. Yu, F.-Q. Shao, Z.-Y. Ge, W.-Q. Wang, and J.-J. Liu, “Enhanced electron trapping and γ ray emission by ultra-intense laser irradiating a near-critical-density plasma filled gold cone,” New J. Phys. 17, 053039 (2015).10.1088/1367-2630/17/5/053039 doi: 10.1088/1367-2630/17/5/053039
    [39]
    X.-L. Zhu, Y. Yin, T.-P. Yu, J.-J. Liu, D.-B. Zou, Z.-Y. Ge, W.-Q. Wang, and F.-Q. Shao, “Ultra-bright, high-energy-density γ-ray emission from a gas-filled gold cone-capillary,” Phys. Plasmas 22, 093109 (2015).10.1063/1.4930117 doi: 10.1063/1.4930117
    [40]
    R. Davidson et al., Frontiers in High Energy Density Physics: The X-Games of Contemporary Science (National Academies Press, 2003).
    [41]
    A. R. Bell and J. G. Kirk, “Possibility of prolific pair production with high-power lasers,” Phys. Rev. Lett. 101, 200403 (2008).10.1103/physrevlett.101.200403 doi: 10.1103/physrevlett.101.200403
    [42]
    S. Cipiccia et al., “Gamma-rays from harmonically resonant betatron oscillations in a plasma wake,” Nat. Phys. 7, 867 (2011).10.1038/nphys2090 doi: 10.1038/nphys2090
    [43]
    K. T. Phuoc, S. Corde, C. Thaury, V. Malka, A. Tafzi, J. P. Goddet, R. C. Shah, S. Sebban, and A. Rousse, “All-optical Compton gamma-ray source,” Nat. Photon. 6, 308 (2012).10.1038/nphoton.2012.82 doi: 10.1038/nphoton.2012.82
    [44]
    G. Sarri et al., “Ultrahigh brilliance multi-MeV γ-ray beams from nonlinear relativistic Thomson scattering,” Phys. Rev. Lett. 113, 224801 (2014).10.1103/physrevlett.113.224801 doi: 10.1103/physrevlett.113.224801
    [45]
    C. Yu et al., “Ultrahigh brilliance quasi-monochromatic MeV γ-rays based on self-synchronized all-optical Compton scattering,” Sci. Rep. 6, 29518 (2016).10.1038/srep29518 doi: 10.1038/srep29518
    [46]
    A. Benedetti, M. Tamburini, and C. H. Keitel, “Giant collimated gamma-ray flashes,” Nat. Photon. 12, 319 (2018).10.1038/s41566-018-0139-y doi: 10.1038/s41566-018-0139-y
    [47]
    J. Q. Yu, R. H. Hu, Z. Gong, A. Ting, Z. Najmudin, D. Wu, H. Y. Lu, W. J. Ma, and X. Q. Yan, “The generation of collimated γ-ray pulse from the interaction between 10 PW laser and a narrow tube target,” Appl. Phys. Lett. 112, 204103 (2018).10.1063/1.5030942 doi: 10.1063/1.5030942
    [48]
    C. Liu et al., “Ultra-bright, well-collimated, GeV gamma-ray production in the QED regime,” Phys. Plasmas 25, 023107 (2018).10.1063/1.5005077 doi: 10.1063/1.5005077
    [49]
    M. J. Hogan et al., “Ultrarelativistic-positron-beam transport through meter-scale plasmas,” Phys. Rev. Lett. 90, 205002 (2003).10.1103/physrevlett.90.205002 doi: 10.1103/physrevlett.90.205002
    [50]
    M. Schollmeier et al., “Controlled transport and focusing of laser-accelerated protons with miniature magnetic devices,” Phys. Rev. Lett. 101, 055004 (2008).10.1103/physrevlett.101.055004 doi: 10.1103/physrevlett.101.055004
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (136) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return