Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 4 Issue 4
Jul.  2019
Turn off MathJax
Article Contents
Bolaños S., Béard J., Revet G., Chen S. N., Pikuz S., Filippov E., Safronova M., Cerchez M., Willi O., Starodubtsev M., Fuchs J.. Highly-collimated, high-charge and broadband MeV electron beams produced by magnetizing solids irradiated by high-intensity lasers[J]. Matter and Radiation at Extremes, 2019, 4(4): 044401. doi: 10.1063/1.5082330
Citation: Bolaños S., Béard J., Revet G., Chen S. N., Pikuz S., Filippov E., Safronova M., Cerchez M., Willi O., Starodubtsev M., Fuchs J.. Highly-collimated, high-charge and broadband MeV electron beams produced by magnetizing solids irradiated by high-intensity lasers[J]. Matter and Radiation at Extremes, 2019, 4(4): 044401. doi: 10.1063/1.5082330

Highly-collimated, high-charge and broadband MeV electron beams produced by magnetizing solids irradiated by high-intensity lasers

doi: 10.1063/1.5082330
  • Received Date: 2018-11-20
  • Accepted Date: 2019-03-12
  • Available Online: 2021-04-15
  • Publish Date: 2019-07-15
  • Laser irradiation of solid targets can drive short and high-charge relativistic electron bunches over micron-scale acceleration gradients. However, for a long time, this technique was not considered a viable means of electron acceleration due to the large intrinsic divergence (∼50° half-angle) of the electrons. Recently, a reduction in this divergence to 10°–20° half-angle has been obtained, using plasma-based magnetic fields or very high contrast laser pulses to extract the electrons into the vacuum. Here we show that we can further improve the electron beam collimation, down to ∼1.5° half-angle, of a high-charge (6 nC) beam, and in a highly reproducible manner, while using standard stand-alone 100 TW-class laser pulses. This is obtained by embedding the laser-target interaction in an external, large-scale (cm), homogeneous, extremely stable, and high-strength (20 T) magnetic field that is independent of the laser. With upcoming multi-PW, high repetition-rate lasers, this technique opens the door to achieving even higher charges (>100 nC).
  • loading
  • [1]
    T. Tajima and J. M. Dawson, “Laser electron accelerator,” Phys. Rev. Lett. 43, 267–270 (1979).10.1103/physrevlett.43.267 doi: 10.1103/physrevlett.43.267
    [2]
    V. Malka et al., “Principles and applications of compact laser–plasma accelerators,” Nat. Phys. 4, 447–453 (2008).10.1038/nphys966 doi: 10.1038/nphys966
    [3]
    E. Esarey, C. B. Schroeder, and W. P. Leemans, “Physics of laser-driven plasma-based electron accelerators,” Rev. Mod. Phys. 81, 1229–1285 (2009).10.1103/revmodphys.81.1229 doi: 10.1103/revmodphys.81.1229
    [4]
    C. Joshi et al., “Ultrahigh gradient particle acceleration by intense laser-driven plasma density waves,” Nature 311, 525–529 (1984).10.1038/311525a0 doi: 10.1038/311525a0
    [5]
    F. Amiranoff et al., “Observation of laser wakefield acceleration of electrons,” Phys. Rev. Lett. 81, 995–998 (1998).10.1103/physrevlett.81.995 doi: 10.1103/physrevlett.81.995
    [6]
    W. P. Leemans et al., “Multi-GeV electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime,” Phys. Rev. Lett. 113, 245002 (2014).10.1103/physrevlett.113.245002 doi: 10.1103/physrevlett.113.245002
    [7]
    O. Lundh et al., “Few femtosecond, few kiloampere electron bunch produced by a laser–plasma accelerator,” Nat. Phys. 7, 219–222 (2011).10.1038/nphys1872 doi: 10.1038/nphys1872
    [8]
    S. Steinke et al., “Multistage coupling of independent laser-plasma accelerators,” Nature 530, 190–193 (2016).10.1038/nature16525 doi: 10.1038/nature16525
    [9]
    J. B. Rosenzweig et al., “Experimental observation of plasma wake-field acceleration,” Phys. Rev. Lett. 61, 98–101 (1988).10.1103/physrevlett.61.98 doi: 10.1103/physrevlett.61.98
    [10]
    M. Litos et al., “High-efficiency acceleration of an electron beam in a plasma wakefield accelerator,” Nature 515, 92–95 (2014).10.1038/nature13882 doi: 10.1038/nature13882
    [11]
    E. Gschwendtner et al., “AWAKE, the advanced proton driven plasma wakefield acceleration experiment at CERN,” Nucl. Instrum. Methods Phys. Res., Sect. A 829, 76–82 (2016).10.1016/j.nima.2016.02.026 doi: 10.1016/j.nima.2016.02.026
    [12]
    T. Hosokai et al., “Effect of external static magnetic field on the emittance and total charge of electron beams generated by laser-wakefield acceleration,” Phys. Rev. Lett. 97, 075004 (2006).10.1103/physrevlett.97.075004 doi: 10.1103/physrevlett.97.075004
    [13]
    S. Hakimi et al., “Wakefield in solid state plasma with the ionic lattice force,” Phys. Plasmas 25, 023112 (2018).10.1063/1.5016445 doi: 10.1063/1.5016445
    [14]
    Y. Tian et al., “Electron emission at locked phases from the laser-driven surface plasma wave,” Phys. Rev. Lett. 109, 115002 (2012).10.1103/physrevlett.109.115002 doi: 10.1103/physrevlett.109.115002
    [15]
    L. Fedeli et al., “Electron acceleration by relativistic surface plasmons in laser-grating interaction,” Phys. Rev. Lett. 116, 015001 (2016).10.1103/physrevlett.116.015001 doi: 10.1103/physrevlett.116.015001
    [16]
    S. C. Wilks, W. L. Kruer, M. Tabak, and A. B. Langdon, “Absorption of ultra-intense laser pulses,” Phys. Rev. Lett. 69, 1383–1386 (1992).10.1103/physrevlett.69.1383 doi: 10.1103/physrevlett.69.1383
    [17]
    F. Brunel, “Not-so-resonant, resonant absorption,” Phys. Rev. Lett. 59, 52–55 (1987).10.1103/physrevlett.59.52 doi: 10.1103/physrevlett.59.52
    [18]
    J. P. Geindre, R. S. Marjoribanks, and P. Audebert, “Electron vacuum acceleration in a regime beyond Brunel absorption,” Phys. Rev. Lett. 104, 135001 (2010).10.1103/physrevlett.104.135001 doi: 10.1103/physrevlett.104.135001
    [19]
    M. Thévenet et al., “Vacuum laser acceleration of relativistic electrons using plasma mirror injectors,” Nat. Phys. 12, 355–360 (2016).10.1038/nphys3597 doi: 10.1038/nphys3597
    [20]
    Y. Ma et al., “Ultrahigh-charge electron beams from laser-irradiated solid surface,” Proc. Natl. Acad. Sci. U. S. A. 115, 6980–6985 (2018).10.1073/pnas.1800668115 doi: 10.1073/pnas.1800668115
    [21]
    M. I. K. Santala et al., “Effect of the plasma density scale-length on the direction of fast electrons in relativistic laser-solid interactions,” Phys. Rev. Lett. 84, 1459–1462 (2000).10.1103/physrevlett.84.1459 doi: 10.1103/physrevlett.84.1459
    [22]
    A. Link, R. R. Freeman, D. W. Schumacher, and L. D. Van Woerkom, “Effects of target charging and ion emission on the energy spectrum of emitted electrons,” Phys. Plasmas 18, 053107 (2011).10.1063/1.3587123 doi: 10.1063/1.3587123
    [23]
    P. Mora, “Plasma expansion into a vacuum,” Phys. Rev. Lett. 90, 185002 (2003).10.1103/physrevlett.90.185002 doi: 10.1103/physrevlett.90.185002
    [24]
    S. N. Chen et al., “Passive tailoring of laser-accelerated ion beam cut-off energy by using double foil assembly,” Phys. Plasmas 21, 023119 (2014).10.1063/1.4867181 doi: 10.1063/1.4867181
    [25]
    F. N. Beg et al., “A study of picosecond laser-solid interactions up to 1019 W cm−2,” Phys. Plasmas 4, 447–457 (1997).10.1063/1.872103 doi: 10.1063/1.872103
    [26]
    M. G. Haines, M. S. Wei, F. N. Beg, and R. B. Stephens, “Hot-electron temperature and laser-light absorption in fast ignition,” Phys. Rev. Lett. 102, 045008 (2009).10.1103/physrevlett.102.045008 doi: 10.1103/physrevlett.102.045008
    [27]
    A. V. Arefiev et al., “Beyond the ponderomotive limit: Direct laser acceleration of relativistic electrons in sub-critical plasmas,” Phys. Plasmas 23, 056704 (2016).10.1063/1.4946024 doi: 10.1063/1.4946024
    [28]
    B. S. Paradkar et al., “Numerical modeling of fast electron generation in the presence of preformed plasma in laser-matter interaction at relativistic intensities,” Phys. Rev. E 83, 046401 (2011).10.1103/physreve.83.046401 doi: 10.1103/physreve.83.046401
    [29]
    J. C. Adam, A. Héron, and G. Laval, “Dispersion and transport of energetic particles due to the interaction of intense laser pulses with overdense plasmas,” Phys. Rev. Lett. 97, 205006 (2006).10.1103/physrevlett.97.205006 doi: 10.1103/physrevlett.97.205006
    [30]
    H. B. Zhuo et al., “Collimation of energetic electrons from a laser-target interaction by a magnetized target back plasma preformed by a long-pulse laser,” Phys. Rev. Lett. 112, 215003 (2014).10.1103/physrevlett.112.215003 doi: 10.1103/physrevlett.112.215003
    [31]
    B. Ramakrishna et al., “Laser-driven fast electron collimation in targets with resistivity boundary,” Phys. Rev. Lett. 105, 135001 (2010).10.1103/physrevlett.105.135001 doi: 10.1103/physrevlett.105.135001
    [32]
    L. Lancia et al., “Topology of megagauss magnetic fields and of heat-carrying electrons produced in a high-power laser-solid interaction,” Phys. Rev. Lett. 113, 235001 (2014).10.1103/physrevlett.113.235001 doi: 10.1103/physrevlett.113.235001
    [33]
    A. S. Pirozhkov et al., “Diagnostic of laser contrast using target reflectivity,” Appl. Phys. Lett. 94, 241102 (2009).10.1063/1.3148330 doi: 10.1063/1.3148330
    [34]
    B. Albertazzi et al., “Production of large volume, strongly magnetized laser-produced plasmas by use of pulsed external magnetic fields,” Rev. Sci. Instrum. 84, 043505 (2013).10.1063/1.4795551 doi: 10.1063/1.4795551
    [35]
    J. P. Zou et al., “Recent progress on LULI high power laser facilities,” J. Phys.: Conf. Ser. 112, 032021 (2008).10.1088/1742-6596/112/3/032021 doi: 10.1088/1742-6596/112/3/032021
    [36]
    D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985).10.1016/0030-4018(85)90120-8 doi: 10.1016/0030-4018(85)90120-8
    [37]
    U. Schramm et al., “First results with the novel petawatt laser acceleration facility in Dresden,” J. Phys.: Conf. Ser. 874, 012028 (2017).10.1088/1742-6596/874/1/012028 doi: 10.1088/1742-6596/874/1/012028
    [38]
    [39]
    M. Gauthier et al., “Investigation of longitudinal proton acceleration in exploded targets irradiated by intense short-pulse laser,” Phys. Plasmas 21, 013102 (2014).10.1063/1.4853475 doi: 10.1063/1.4853475
    [40]
    D. P. Higginson et al., “Detailed characterization of laser-produced astrophysically-relevant jets formed via a poloidal magnetic nozzle,” High Energy Density Phys. 23, 48–59 (2017).10.1016/j.hedp.2017.02.003 doi: 10.1016/j.hedp.2017.02.003
    [41]
    S. N. Chen et al., “Absolute dosimetric characterization of Gafchromic EBT3 and HDv2 films using commercial flat-bed scanners and evaluation of the scanner response function variability,” Rev. Sci. Instrum. 87, 073301 (2016).10.1063/1.4954921 doi: 10.1063/1.4954921
    [42]
    S. D. Kraft et al., “First demonstration of multi-MeV proton acceleration from a cryogenic hydrogen ribbon target,” Plasma Phys. Controlled Fusion 60, 044010 (2018).10.1088/1361-6587/aaae38 doi: 10.1088/1361-6587/aaae38
    [43]
    S. Busold et al., “Focusing and transport of high-intensity multi-MeV proton bunches from a compact laser-driven source,” Phys. Rev. Spec. Top.-Accel. Beams 16, 101302 (2013).10.1103/physrevstab.16.101302 doi: 10.1103/physrevstab.16.101302
    [44]
    P. R. Bolton et al., “Instrumentation for diagnostics and control of laser-accelerated proton (ion) beams,” Phys. Med. 30, 255–270 (2014).10.1016/j.ejmp.2013.09.002 doi: 10.1016/j.ejmp.2013.09.002
    [45]
    [46]
    P. Antici et al., “Measuring hot electron distributions in intense laser interaction with dense matter,” New J. Phys. 14, 063023 (2012).10.1088/1367-2630/14/6/063023 doi: 10.1088/1367-2630/14/6/063023
    [47]
    P. Mora and T. Grismayer, “Rarefaction acceleration and kinetic effects in thin-foil expansion into a vacuum,” Phys. Rev. Lett. 102, 145001 (2009).10.1103/physrevlett.102.145001 doi: 10.1103/physrevlett.102.145001
    [48]
    J.-L. Dubois et al., “Target charging in short-pulse-laser–plasma experiments,” Phys. Rev. E 89, 013102 (2014).10.1103/physreve.89.013102 doi: 10.1103/physreve.89.013102
    [49]
    V. L. Highland, “Some practical remarks on multiple scattering,” Nucl. Instrum. Methods 129, 497–499 (1975).10.1016/0029-554x(75)90743-0 doi: 10.1016/0029-554x(75)90743-0
    [50]
    [51]
    [52]
    Y. Ding et al., “Measurements and simulations of ultralow emittance and ultrashort electron beams in the linac coherent light source,” Phys. Rev. Lett. 102, 254801 (2009).10.1103/physrevlett.102.254801 doi: 10.1103/physrevlett.102.254801
    [53]
    B. Cros et al., “Laser plasma acceleration of electrons with multi-PW laser beams in the frame of CILEX,” Nucl. Instrum. Methods Phys. Res., Sect. A 740, 27–33 (2014).10.1016/j.nima.2013.10.090 doi: 10.1016/j.nima.2013.10.090
    [54]
    [55]
    M. Gauthier et al., “High repetition rate, multi-MeV proton source from cryogenic hydrogen jets,” Appl. Phys. Lett. 111, 114102 (2017).10.1063/1.4990487 doi: 10.1063/1.4990487
    [56]
    A. Poyé et al., “Dynamic model of target charging by short laser pulse interactions,” Phys. Rev. E 92, 043107 (2015).10.1103/physreve.92.043107 doi: 10.1103/physreve.92.043107
    [57]
    Y. Ping et al., “Absorption of short laser pulses on solid targets in the ultrarelativistic regime,” Phys. Rev. Lett. 100, 085004 (2008).10.1103/physrevlett.100.085004 doi: 10.1103/physrevlett.100.085004
    [58]
    [59]
    [60]
    M. E. Conde et al., “Generation and acceleration of high-charge short-electron bunches,” Phys. Rev. Spec. Top.-Accel. Beams 1, 041302 (1998).10.1103/physrevstab.1.041302 doi: 10.1103/physrevstab.1.041302
    [61]
    P. Antici et al., “Laser-driven electron beamlines generated by coupling laser-plasma sources with conventional transport systems,” J. Appl. Phys. 112, 044902 (2012).10.1063/1.4740456 doi: 10.1063/1.4740456
    [62]
    A. Ben-Ismaïl et al., “Compact and high-quality gamma-ray source applied to 10 μ m-range resolution radiography,” Appl. Phys. Lett. 98, 264101 (2011).10.1063/1.3604013 doi: 10.1063/1.3604013
    [63]
    P. A. Norreys et al., “Observation of a highly directional γ-ray beam from ultrashort, ultraintense laser pulse interactions with solids,” Phys. Plasmas 6, 2150–2156 (1999).10.1063/1.873466 doi: 10.1063/1.873466
    [64]
    R. D. Edwards et al., “Characterization of a gamma-ray source based on a laser-plasma accelerator with applications to radiography,” Appl. Phys. Lett. 80, 2129–2131 (2002).10.1063/1.1464221 doi: 10.1063/1.1464221
    [65]
    Z.-H. He et al., “Capturing structural dynamics in crystalline silicon using chirped electrons from a laser wakefield accelerator,” Sci. Rep. 6, 36224 (2016).10.1038/srep36224 doi: 10.1038/srep36224
    [66]
    S. Palaniyappan et al., “Dynamics of relativistic transparency and optical shuttering in expanding overdense plasmas,” Nat. Phys. 8, 763–769 (2012).10.1038/nphys2390 doi: 10.1038/nphys2390
    [67]
    H. S. Ghotra et al., “Transverse electromagnetic Hermite–Gaussian mode-driven direct laser acceleration of electron under the influence of axial magnetic field,” Laser Part. Beams 36, 154–161 (2018).10.1017/s0263034618000083 doi: 10.1017/s0263034618000083
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(1)

    Article Metrics

    Article views (250) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return