Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 4 Issue 1
Jan.  2019
Turn off MathJax
Article Contents
Liu Meifang, Huang Yawen, Chen Sufen, Pan Dawei, Chen Miao, Chu Qiaomei, Liu Yiyang, Yin Qiang, Zhang Zhanwen. Progress and challenges in the fabrication of DPS shells for ICF[J]. Matter and Radiation at Extremes, 2019, 4(1): 018401. doi: 10.1063/1.5081945
Citation: Liu Meifang, Huang Yawen, Chen Sufen, Pan Dawei, Chen Miao, Chu Qiaomei, Liu Yiyang, Yin Qiang, Zhang Zhanwen. Progress and challenges in the fabrication of DPS shells for ICF[J]. Matter and Radiation at Extremes, 2019, 4(1): 018401. doi: 10.1063/1.5081945

Progress and challenges in the fabrication of DPS shells for ICF

doi: 10.1063/1.5081945
More Information
  • Corresponding author: a)Authors to whom correspondence should be addressed: bjzzw1973@126.com and liumeifang@caep.cn; a)Authors to whom correspondence should be addressed: bjzzw1973@126.com and liumeifang@caep.cn
  • Received Date: 2018-04-25
  • Accepted Date: 2018-07-24
  • Available Online: 2021-04-13
  • Publish Date: 2019-01-15
  • To improve the quality of deuterated polystyrene (DPS) shells, the synthesis and purification of DPS as well as the fabrication of DPS shells are investigated. The molecular weight and molecular weight distribution, measured by GPC-MALLS, are about 350 kg mol-1 and less than 2.0, respectively. The results of TG and GC-MS indicate that the residual solvent is almost completely removed. DPS shells with ∼ 300 μm –2500 μm diameter and ∼10 μm–100 μm wall thickness are successfully prepared by a microfluidic device. The monodispersity of the diameter is much better than that of the wall thickness in a batch of DPS shells. The vacuoles can be suppressed by both reducing hydrophilic residues in DPS and adding some salts into the outer water phase (W2). The defects appearing during the drying process decrease by heat treatment, ethanol exchange, and lowered drying temperature. The results presented in this work not only provide guidelines for the preparation of DPS shells of better quality, but also indicate challenges for the future.
  • loading
  • [1]
    K. Nagai, H. Yang, T. Norimatsu, H. Azechi, F. Belkada, Y. Fujimoto, T. Fujimura, K. Fujioka, S. Fujioka, and H. Homma, “Fabrication of aerogel capsule, bromine-doped capsule, and modified gold cone in modified target for the fast ignition realization experiment (FIREX) project,” Nucl. Fusion 49, 095028 (2009).10.1088/0029-5515/49/9/095028 doi: 10.1088/0029-5515/49/9/095028
    [2]
    K. Du, X. Luo, L. Zhou, and J. Xiao, “‘Preparation of cone-shell target for fast ignition experiment,’ High Power Laser Part,” Beams 17, 1505–1508 (2005). http://www.hplpb.com.cn/EN/abstract/abstract1587.shtml.
    [3]
    G. Ren, J. Yan, J. Liu, K. Lan, Y. H. Chen, W. Y. Huo, Z. Fan, X. Zhang, J. Zheng, Z. Chen, W. Jiang, L. Chen, Q. Tang, Z. Yuan, F. Wang, S. Jiang, Y. Ding, W. Zhang, and X. T. He, “Neutron generation by laser-driven spherically convergent plasma fusion,” Phys. Rev. Lett. 118, 165001 (2017).10.1103/physrevlett.118.165001 doi: 10.1103/physrevlett.118.165001
    [4]
    M. F. Liu, Q. M. Chu, S. F. Chen, J. Li, Y. Y. Liu, J. Li, L. Su, B. Li, and Z. W. Zhang, “Fabrication development of deuterated polymer shell used in fast ignition experiment,” At. Energy Sci. Technol 51, 380–384 (2017).10.7538/yzk.2017.51.02.0380 doi: 10.7538/yzk.2017.51.02.0380
    [5]
    M. Takagi, T. Norimatsu, T. Yamanaka, and S. Nakai, “Development of deuterated polystyrene shells for laser fusion by means of a density-matched emulsion method,” J. Vacuum Sci. Technol. A 9, 2145–2148 (1991).10.1116/1.577241 doi: 10.1116/1.577241
    [6]
    L. Zhang, D. You, D. Z. Gao, Y. J. Tang, Y. M. Zheng, S. H. Wen, and R. G. Xie, “Fabrication of deuterated solid ICF target,” High Power Laser Part. Beams 11, 605–608 (1999).
    [7]
    S. Okushima, T. Nisisako, T. Torii, and T. Higuchi, “Controlled production of monodisperse double emulsions by two-Step droplet breakup in microfluidic devices,” Langmuir 20, 9905–9908 (2004).10.1021/la0480336 doi: 10.1021/la0480336
    [8]
    A. R. Abate, J. Thiele, and D. A. Weitz, “One-step formation of multiple emulsions in microfluidics,” Lab Chip 11, 253–258 (2011).10.1039/c0lc00236d doi: 10.1039/c0lc00236d
    [9]
    E. Lorenceau, A. S. Utada, D. R. Link, G. Cristobal, M. Joanicot, and D. A. Weitz, “Generation of polymerosomes from double-emulsions,” Langmuir 21, 9183–9186 (2005).10.1021/la050797d doi: 10.1021/la050797d
    [10]
    J. W. Kim, A. S. Utada, A. Fernández-Nieves, Z. Hu, and D. A. Weitz, “Fabrication of monodisperse gel shells and functional microgels in microfluidic devices,” Angew. Chem. 119, 1851–1854 (2007).10.1002/ange.200604206 doi: 10.1002/ange.200604206
    [11]
    A. S. Utada, E. Lorenceau, D. R. Link, P. D. Kaplan, H. A. Stone, and D. A. Weitz, “Monodisperse double emulsions generated from a microcapillary device,” Science 308, 537–541 (2005).10.1126/science.1109164 doi: 10.1126/science.1109164
    [12]
    A. S. Utada, A. Fernandez-Nieves, H. A. Stone, and D. A. Weitz, “Dripping to jetting transitions in coflowing liquid streams,” Phys. Rev. Lett. 99, 094502 (2007).10.1103/physrevlett.99.094502 doi: 10.1103/physrevlett.99.094502
    [13]
    L. R. Arriaga, E. Amstad, and D. A. Weitz, “Scalable single-step microfluidic production of single-core double emulsions with ultra-thin shells,” Lab Chip 15, 3335–3340 (2015).10.1039/c5lc00631g doi: 10.1039/c5lc00631g
    [14]
    L. Shang, Y. Cheng, and Y. Zhao, “Emerging droplet microfluidics,” Chem. Rev. 117, 7964–8040 (2017).10.1021/acs.chemrev.6b00848 doi: 10.1021/acs.chemrev.6b00848
    [15]
    [16]
    M. F. Liu, S. F. Chen, X. B. Qi, B. Li, R. T. Shi, Y. Y. Liu, Y. P. Chen, and Z. W. Zhang, “Improvement of wall thickness uniformity of thick-walled polystyrene shells by density matching,” Chem. Eng. J. 241, 466–476 (2014).10.1016/j.cej.2013.08.120 doi: 10.1016/j.cej.2013.08.120
    [17]
    M. F. Liu, Y. Q. Zheng, J. Li, S. F. Chen, Y. Y. Liu, J. Li, B. Li, and Z. W. Zhang, “Effects of molecular weight of PVA on formation, stability and deformation of compound droplets for ICF polymer shells,” Nucl. Fusion 57, 016018 (2017).10.1088/0029-5515/57/1/016018 doi: 10.1088/0029-5515/57/1/016018
    [18]
    T. Shao, X. Feng, Y. Jin, and Y. Cheng, “Controlled production of double emulsions in dual-coaxial capillaries device for millimeter-scale hollow polymer spheres,” Chem. Eng. Sci. 104, 55–63 (2013).10.1016/j.ces.2013.09.001 doi: 10.1016/j.ces.2013.09.001
    [19]
    X. S. Zhao, D. Z. Gao, X. J. Ma, Y. J. Tang, L. Zhang, T. Sun, and S. Dong, “Batch processing of geometric parameters and wall thickness distribution calculation of ICF capsule by X-ray imaging method,” At. Energy Sci. Technol. 46, 487–492 (2012).
    [20]
    [21]
    B. W. McQuillan, F. H. Elsner, R. B. Stephens, and L. C. Brown, “The use of CaCl2 and other salts to improve surface finish and eliminate vacuoles in ICF microencapsutlated shells,” Fusion Technol. 35, 198–201 (1999).10.13182/fst99-a11963922 doi: 10.13182/fst99-a11963922
    [22]
    P. Subramanian, A. Zebib, and B. McQuillan, “Axisymmetric Marangoni convection in microencapsulation,” Acta Astronautica 57, 97–103 (2005).10.1016/j.actaastro.2005.03.018 doi: 10.1016/j.actaastro.2005.03.018
    [23]
    D. W. Pan, W. X. Huang, Q. Chen, S. F. Chen, Z. Z. Zhang, M. F. Liu, and B. Li, “Investigation of craze and cracks of polystyrene shells during drying process,” Fusion Sci. Technol. 73, 59–67 (2018).10.1080/15361055.2017.1372678 doi: 10.1080/15361055.2017.1372678
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article Metrics

    Article views (261) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return