Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 4 Issue 3
May  2019
Turn off MathJax
Article Contents
Szerypo J., Ma W., Bothmann G., Hahner D., Haug M., Hilz P., Kreuzer Ch., Lange R., Seuferling S., Speicher M., Stehr F., Stork S., Thirolf P. G., Schreiber J., Wirth H.-F.. Target fabrication for laser-ion acceleration research at the Technological Laboratory of the LMU Munich[J]. Matter and Radiation at Extremes, 2019, 4(3): 035201. doi: 10.1063/1.5081807
Citation: Szerypo J., Ma W., Bothmann G., Hahner D., Haug M., Hilz P., Kreuzer Ch., Lange R., Seuferling S., Speicher M., Stehr F., Stork S., Thirolf P. G., Schreiber J., Wirth H.-F.. Target fabrication for laser-ion acceleration research at the Technological Laboratory of the LMU Munich[J]. Matter and Radiation at Extremes, 2019, 4(3): 035201. doi: 10.1063/1.5081807

Target fabrication for laser-ion acceleration research at the Technological Laboratory of the LMU Munich

doi: 10.1063/1.5081807
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: jszerypo@lmu.de
  • Received Date: 2018-11-16
  • Accepted Date: 2019-03-12
  • Available Online: 2021-04-13
  • Publish Date: 2019-05-15
  • The Technological Laboratory of LMU Munich supplies various types of solid-state target for laser plasma experiments at the Centre for Advanced Laser Applications in Garching. Our main focus here is on the production of free-standing, thin foil targets, such as diamond-like-carbon foils, carbon nanotube foams (CNFs), plastic, and gold foils. The presented methods comprise cathodic arc deposition for DLC targets, chemical vapor deposition for CNFs, a droplet and spin-coating process for plastic foil production, as well as physical vapor deposition that has been optimized to provide ultrathin gold foils and tailored sacrifice layers. This paper reviews our current capabilities, which are a result of a close collaboration between target production processes and experiment, using high-power chirped pulse amplification laser systems over the past eight years.
  • loading
  • [1]
    [2]
    A. Henig et al., “Radiation-pressure acceleration of ion beams driven by circularly polarized laser pulses,” Phys. Rev. Lett. 103, 245003 (2009).10.1103/physrevlett.103.245003 doi: 10.1103/physrevlett.103.245003
    [3]
    W. Ma et al., “Directly synthesized strong, highly conducting, transparent single-walled carbon nanotube films,” Nano Lett. 7, 2307 (2007).10.1021/nl070915c doi: 10.1021/nl070915c
    [4]
    W. Ma et al., “Preparation of self-supporting diamond-like carbon nanofoils with thickness less than 5 nm for laser-driven ion acceleration,” Nucl. Instrum. Methods Phys. Res., Sect. A 655, 53 (2011).10.1016/j.nima.2011.06.019 doi: 10.1016/j.nima.2011.06.019
    [5]
    J. Robertson, “Diamond-like amorphous carbon,” Mater. Sci. Eng.: Rep. 37, 129 (2002).10.1016/s0927-796x(02)00005-0 doi: 10.1016/s0927-796x(02)00005-0
    [6]
    I. G. Brown, “Cathodic arc deposition of films,” Annu. Rev. Mater. Sci. 28, 243 (1998).10.1146/annurev.matsci.28.1.243 doi: 10.1146/annurev.matsci.28.1.243
    [7]
    J. Szerypo et al., “Present status of the technological laboratory at the LMU Munich,” J. Radioanal. Nucl. Chem. 299, 1145 (2014).10.1007/s10967-013-2638-0 doi: 10.1007/s10967-013-2638-0
    [8]
    J. H. Bin et al., “Ion acceleration using relativistic pulse shaping in near-critical-density plasmas,” Phys. Rev. Lett. 115(6), 064801 (2015).10.1103/physrevlett.115.064801 doi: 10.1103/physrevlett.115.064801
    [9]
    J. H. Bin et al., “Enhanced laser-driven ion acceleration by superponderomotive electrons generated from near-critical-density plasma,” Phys. Rev. Lett. 120(7), 074801 (2018).10.1103/physrevlett.120.074801 doi: 10.1103/physrevlett.120.074801
    [10]
    W. J. Ma et al., “Laser acceleration of highly energetic carbon ions using a double-layer target composed of slightly underdense plasma and ultrathin foil,” Phys. Rev. Lett. 122(1), 014803 (2019).10.1103/physrevlett.122.014803 doi: 10.1103/physrevlett.122.014803
    [11]
    [12]
    K. Norrman et al., “Studies of spin-coated polymer films,” Annu. Rep. Prog. Chem., Sect. C: Phys. Chem. 101, 174 (2005).10.1039/b408857n doi: 10.1039/b408857n
    [13]
    S. Steinke et al., “Stable laser-ion acceleration in the light sail regime,” Phys. Rev. Spec. Top.--Accel. Beams 16, 011303 (2013).10.1103/physrevstab.16.011303 doi: 10.1103/physrevstab.16.011303
    [14]
    A. A. Tracton, Coatings Materials and Surface Coatings (CRC Press, 2006).
    [15]
    E. Davison and W. Colquhoun, “Ultrathin formvar support films for transmission electron microscopy,” J. Electron Microsc. Tech. 2(1), 35 (1985).10.1002/jemt.1060020105 doi: 10.1002/jemt.1060020105
    [16]
    S. Seuferling et al., “Efficient offline production of freestanding thin plastic foils for laser-driven ion sources,” High Power Laser Sci. Eng. 5, e8 (2017).10.1017/hpl.2017.7 doi: 10.1017/hpl.2017.7
    [17]
    H.-J. Maier et al., “State of the art of high vacuum sputter deposition of nuclear accelerator targets,” Nucl. Instrum. Methods Phys. Res., Sect. A 334, 137 (1993).10.1016/0168-9002(93)90541-o doi: 10.1016/0168-9002(93)90541-o
    [18]
    J. Szerypo et al., “Preparation of isotopically enriched mercury sulphide targets,” Nucl. Instrum. Methods Phys. Res., Sect. A 590, 73 (2008).10.1016/j.nima.2008.02.046 doi: 10.1016/j.nima.2008.02.046
    [19]
    C. Spindloe et al., “High volume fabrication of laser targets using MEMS techniques,” J. Phys.: Conf. Ser. 713, 012002 (2016).10.1088/1742-6596/713/1/012002 doi: 10.1088/1742-6596/713/1/012002
    [20]
    J. T. Morrison et al., “MeV proton acceleration at kHz repetition ratefrom ultra-intense laser liquid interaction,” New J. Phys. 20(2), 022001 (2018).10.1088/1367-2630/aaa8d1 doi: 10.1088/1367-2630/aaa8d1
    [21]
    L. Obst et al., “Efficient laser-driven proton acceleration from cylindrical and planar cryogenic hydrogen jets,” Sci. Rep. 7(1), 10248 (2017).10.1038/s41598-017-10589-3 doi: 10.1038/s41598-017-10589-3
    [22]
    S. D. Kraft et al., “First demonstration of multi-MeV proton acceleration from a cryogenic hydrogen ribbon target,” Plasma Phys. Controlled Fusion 60(4), 044010 (2018).10.1088/1361-6587/aaae38 doi: 10.1088/1361-6587/aaae38
    [23]
    G. Galinis et al., “Micrometer-thickness liquid sheet jets flowing in vacuum,” Rev. Sci. Instrum. 88(8), 083117 (2017).10.1063/1.4990130 doi: 10.1063/1.4990130
    [24]
    P. L. Poole et al., “Laser-driven ion acceleration via target normal sheath acceleration in the relativistic transparency regime,” New J. Phys. 20(1), 013019 (2018).10.1088/1367-2630/aa9d47 doi: 10.1088/1367-2630/aa9d47
    [25]
    C. Danson et al., “Petawatt class lasers worldwide,” High Power Laser Sci. Eng. 3, e3 (2015).10.1017/hpl.2014.52 doi: 10.1017/hpl.2014.52
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views (404) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return