Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 4 Issue 5
Sep.  2019
Turn off MathJax
Article Contents
Chen S. N., Negoita F., Spohr K., d’Humières E., Pomerantz I., Fuchs J.. Extreme brightness laser-based neutron pulses as a pathway for investigating nucleosynthesis in the laboratory[J]. Matter and Radiation at Extremes, 2019, 4(5): 054402. doi: 10.1063/1.5081666
Citation: Chen S. N., Negoita F., Spohr K., d’Humières E., Pomerantz I., Fuchs J.. Extreme brightness laser-based neutron pulses as a pathway for investigating nucleosynthesis in the laboratory[J]. Matter and Radiation at Extremes, 2019, 4(5): 054402. doi: 10.1063/1.5081666

Extreme brightness laser-based neutron pulses as a pathway for investigating nucleosynthesis in the laboratory

doi: 10.1063/1.5081666
  • Received Date: 2018-11-15
  • Accepted Date: 2019-06-10
  • Publish Date: 2019-09-15
  • With the much-anticipated multi-petawatt (PW) laser facilities that are coming online, neutron sources with extreme fluxes could soon be in reach. Such sources would rely on spallation by protons accelerated by the high-intensity lasers. These high neutron fluxes would make possible not only direct measurements of neutron capture and β-decay rates related to the r-process of nucleosynthesis of heavy elements, but also such nuclear measurements in a hot plasma environment, which would be beneficial for s-process investigations in astrophysically relevant conditions. This could, in turn, finally allow possible reconciliation of the observed element abundances in stars and those derived from simulations, which at present show large discrepancies. Here, we review a possible pathway to reach unprecedented neutron fluxes using multi-PW lasers, as well as strategies to perform measurements to investigate the r- and s-processes of nucleosynthesis of heavy elements in cold matter, as well as in a hot plasma environment.
  • loading
  • [1]
    M. Arnould et al., “The r-process of stellar nucleosynthesis: Astrophysics and nuclear physics achievements and mysteries,” Phys. Rep. 450, 97 (2007).10.1016/j.physrep.2007.06.002 doi: 10.1016/j.physrep.2007.06.002
    [2]
    C. Lederer et al., “Experiments with neutron beams for the astrophysical s process,” J. Phys.: Conf. Ser. 665, 012020 (2016).10.1088/1742-6596/665/1/012020 doi: 10.1088/1742-6596/665/1/012020
    [3]
    E. M. Burbidge et al., “Synthesis of the elements in stars,” Rev. Mod. Phys. 29, 547 (1957).10.1103/revmodphys.29.547 doi: 10.1103/revmodphys.29.547
    [4]
    R. Reifarth et al., “Neutron reactions in astrophysics,” J. Phys. G: Nucl. Part. Phys. 41, 053101 (2014).10.1088/0954-3899/41/5/053101 doi: 10.1088/0954-3899/41/5/053101
    [5]
    U. Ratzel et al., “Nucleosynthesis at the termination point of the s-process,” Phys. Rev. C 70, 065803 (2004).10.1103/physrevc.70.065803 doi: 10.1103/physrevc.70.065803
    [6]
    J. J. Cowan et al., “R-process nucleosynthesis in dynamic helium-burning environments,” Astrophys. J. 294, 656 (1985).10.1086/163335 doi: 10.1086/163335
    [7]
    F.-K. Thielemann et al., “What are the astrophysical sites for the r-process and the production of heavy elements?,” Progr. Part. Nucl. Phys. 66, 346–353 (2011).10.1016/j.ppnp.2011.01.032 doi: 10.1016/j.ppnp.2011.01.032
    [8]
    N. R. Tanvir et al., “A ‘kilonova’ associated with the short-duration γ-ray burst GRB 130603B,” Nature 500, 547 (2013).10.1038/nature12505 doi: 10.1038/nature12505
    [9]
    W. R. Binns et al., “Observation of the 60Fe nucleosynthesis-clock isotope in galactic cosmic rays,” Science 352, 677 (2016).10.1126/science.aad6004 doi: 10.1126/science.aad6004
    [10]
    A. P. Ji et al., “R-process enrichment from a single event in an ancient dwarf galaxy,” Nature 531, 610 (2016).10.1038/nature17425 doi: 10.1038/nature17425
    [11]
    G. M. Fuller et al., “Primordial black holes and r-process nucleosynthesis,” Phys. Rev. Lett. 119, 061101 (2017).10.1103/physrevlett.119.061101 doi: 10.1103/physrevlett.119.061101
    [12]
    C. J. Horowitz et al., “r-process nucleosynthesis: Connecting rare-isotope beam facilities with the cosmos,” J. Phys. G: Nucl. Part. Phys. 46, 83001 (2019).10.1088/1361-6471/ab0849 doi: 10.1088/1361-6471/ab0849
    [13]
    B. P. Abbott et al., “GW170817: Observation of gravitational waves from a binary neutron star in spiral,” Phys. Rev. Lett. 119, 161101 (2017).10.1103/physrevlett.119.161101 doi: 10.1103/physrevlett.119.161101
    [14]
    E. Pian et al., “Spectroscopic identification of r-process nucleosynthesis in a double neutron-star merger,” Nature 551, 67 (2017).
    [15]
    D. Kasen, B. Metzger, J. Barnes, E. Quataert, and E. Ramirez-Ruiz, “Origin of the heavy elements in binary neutron-star mergers from a gravitational-wave event,” Nature 551, 80 (2017).10.1038/nature24453 doi: 10.1038/nature24453
    [16]
    H. Diamond et al., “Heavy isotope abundances in Mike thermonuclear device,” Phys. Rev. 119, 2000 (1960).10.1103/physrev.119.2000 doi: 10.1103/physrev.119.2000
    [17]
    [18]
    M. R. Mumpower et al., “The impact of individual nuclear properties on r-process nucleosynthesis,” Prog. Part. Nucl. Phys. 86, 86 (2016).10.1016/j.ppnp.2015.09.001 doi: 10.1016/j.ppnp.2015.09.001
    [19]
    G. Feinberg et al., “LiLiT-a liquid-lithium target as an intense neutron source for nuclear astrophysics at the soreq applied research accelerator facility,” Nucl. Phys. A 827, 590c (2009).10.1016/j.nuclphysa.2009.05.130 doi: 10.1016/j.nuclphysa.2009.05.130
    [20]
    O. A. Hurricane et al., “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506, 343 (2014).10.1038/nature13008 doi: 10.1038/nature13008
    [21]
    R. Reifarth and Y. A. Litvinov, “Measurements of neutron-induced reactions in inverse kinematics,” Phys. Rev. Spec. Top. - Accel. Beams 17, 014701 (2014).10.1103/physrevstab.17.014701 doi: 10.1103/physrevstab.17.014701
    [22]
    I. V. Panov, “Nucleosynthesis of heavy elements in the r-process,” Phys. At. Nucl. 79, 159–198 (2016).10.1134/s1063778816020137 doi: 10.1134/s1063778816020137
    [23]
    H.-T. Janka et al., “Physics of core-collapse supernovae in three dimensions: A sneak preview,” Annu. Rev. Nucl. Part. Sci. 66, 341–375 (2016).10.1146/annurev-nucl-102115-044747 doi: 10.1146/annurev-nucl-102115-044747
    [24]
    T. Rauscher, “Revision of the derivation of stellar rates from experiment and impact on Eu s-process contributions,” J. Phys.: Conf. Ser. 665, 012024 (2016).10.1088/1742-6596/665/1/012024 doi: 10.1088/1742-6596/665/1/012024
    [25]
    N. Nishimura et al., “Impact of new β-decay half-lives on r-process nucleosynthesis,” Phys. Rev. C 85, 048801 (2012).10.1103/physrevc.85.048801 doi: 10.1103/physrevc.85.048801
    [26]
    G. Gosselin et al., “Nuclear excitation processes in astrophysical plasmas,” in Astrophysics, edited by I. Kucuk (InTech, London, 2012).
    [27]
    J. N. Ávila et al., “Europium s-process signature at close-to-solar metallicity in stardust SiC grains from asymptotic giant branch stars,” Astrophys. J. Lett. 768, L18 (2013).10.1088/2041-8205/768/1/l18 doi: 10.1088/2041-8205/768/1/l18
    [28]
    T. Rauscher, “Formalism for inclusion of measured reaction cross sections in stellar rates including uncertainties and its application to neutron capture in the s-process,” Astrophys. J. Lett. 755, L10 (2012).10.1088/2041-8205/755/1/l10 doi: 10.1088/2041-8205/755/1/l10
    [29]
    G. Gosselin et al., “Enhanced nuclear level decay in hot dense plasmas,” Phys. Rev. C 70, 064603 (2004).10.1103/physrevc.70.064603 doi: 10.1103/physrevc.70.064603
    [30]
    A. V. Andreev et al., “Excitation and decay of low-lying nuclear states in a dense plasma produced by a subpicosecond laser pulse,” J. Exp. Theor. Phys. 91, 1163 (2000).10.1134/1.1342882 doi: 10.1134/1.1342882
    [31]
    G. Gosselin et al., “Modified nuclear level lifetime in hot dense plasmas,” Phys. Rev. C 76, 044611 (2007).10.1103/physrevc.76.044611 doi: 10.1103/physrevc.76.044611
    [32]
    S. Goriely, “Nuclear reaction data relevant to nuclear astrophysics,” J. Nucl. Sci. Tech. 39(suppl. 2), 536 (2002).10.1080/00223131.2002.10875157 doi: 10.1080/00223131.2002.10875157
    [33]
    T. Rauscher et al., “Opportunities to constrain astrophysical reaction rates for the s-process via determination of the ground-state cross-sections,” Astrophys. J. 738, 143 (2011).10.1088/0004-637x/738/2/143 doi: 10.1088/0004-637x/738/2/143
    [34]
    F. Raiola et al., “First hint on a change of the 210Po alpha-decay half-life in the metal Cu,” Eur. Phys. J. A 32, 51 (2007).10.1140/epja/i2007-10012-8 doi: 10.1140/epja/i2007-10012-8
    [35]
    K. Takahashi and K. Yokoi, “Beta-decay rates of highly ionized heavy atoms in stellar interiors,” At. Data Nucl. Data Tables 36, 375 (1987).10.1016/0092-640x(87)90010-6 doi: 10.1016/0092-640x(87)90010-6
    [36]
    F. Bosch et al., “Observation of bound-state β-decay of fully ionized 187Re: 187Re187Os cosmochronometry,” Phys. Rev. Lett. 77, 5190 (1996).10.1103/physrevlett.77.5190 doi: 10.1103/physrevlett.77.5190
    [37]
    Yu. A. Litvinov and F. Bosch, “Beta decay of highly charged ions,” Rep. Prog. Phys. 74, 016301 (2011).10.1088/0034-4885/74/1/016301 doi: 10.1088/0034-4885/74/1/016301
    [38]
    S. Goriely et al., “New fission fragment distributions and r-process origin of the rare-earth elements,” Phys. Rev. Lett. 111, 242502 (2013).10.1103/physrevlett.111.242502 doi: 10.1103/physrevlett.111.242502
    [39]
    [40]
    B. A. Remington et al., “Modeling astrophysical phenomena in the laboratory with intense lasers,” Science 284, 1488 (1999).10.1126/science.284.5419.1488 doi: 10.1126/science.284.5419.1488
    [41]
    B. Albertazzi et al., “Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field,” Science 346, 325 (2014).10.1126/science.1259694 doi: 10.1126/science.1259694
    [42]
    G. Revet et al., “Laboratory unraveling of matter accretion in young stars,” Sci. Adv. 3, e1700982 (2017).10.1126/sciadv.1700982 doi: 10.1126/sciadv.1700982
    [43]
    G. Gregori et al., “Generation of scaled protogalactic seed magnetic fields in laser-produced shock waves,” Nature 481, 480–483 (2012).10.1038/nature10747 doi: 10.1038/nature10747
    [44]
    C. Danson et al., “Petawatt class lasers worldwide,” High Power Laser Sci. Eng. 3, e3 (2015).10.1017/hpl.2014.52 doi: 10.1017/hpl.2014.52
    [45]
    C. Guerrero et al., “Prospects for direct neutron capture measurements on s-process branching point isotopes,” Eur. Phys. J. A 53, 87 (2017).10.1140/epja/i2017-12261-2 doi: 10.1140/epja/i2017-12261-2
    [46]
    M. Roth et al., “Bright laser-driven neutron source based on the relativistic transparency of solids,” Phys. Rev. Lett. 110, 044802 (2013).10.1103/physrevlett.110.044802 doi: 10.1103/physrevlett.110.044802
    [47]
    I. Pomerantz et al., “Ultrashort pulsed neutron source,” Phys. Rev. Lett. 113, 184801 (2014).10.1103/physrevlett.113.184801 doi: 10.1103/physrevlett.113.184801
    [48]
    Y. Arikawa et al., “High-intensity neutron generation via laser-driven photonuclear reaction,” Plasma Fusion Res. 10, 2404003 (2015).10.1585/pfr.10.2404003 doi: 10.1585/pfr.10.2404003
    [49]
    D. P. Higginson et al., “Temporal narrowing of neutrons produced by high-intensity short-pulse lasers,” Phys. Rev. Lett. 115, 054802 (2015).10.1103/physrevlett.115.054802 doi: 10.1103/physrevlett.115.054802
    [50]
    S. Mirfayzi et al., “Experimental demonstration of a compact epithermal neutron source based on a high power laser,” Appl. Phys. Lett. 111, 044101 (2017).10.1063/1.4994161 doi: 10.1063/1.4994161
    [51]
    A. Macchi et al., “Ion acceleration by superintense laser-plasma interaction,” Rev. Mod. Phys. 85, 751 (2013).10.1103/revmodphys.85.751 doi: 10.1103/revmodphys.85.751
    [52]
    E. Gaul et al., “Demonstration of a 1.1 petawatt laser based on a hybrid optical parametric chirped pulse amplification/mixed Nd:glass amplifier,” Appl. Opt. 49, 1676–1681 (2010).10.1364/ao.49.001676 doi: 10.1364/ao.49.001676
    [53]
    Z. Gan et al., “200 J high efficiency Ti:sapphire chirped pulse amplifier pumped by temporal dual-pulse,” Opt. Express 25, 5169 (2017).10.1364/oe.25.005169 doi: 10.1364/oe.25.005169
    [54]
    J. H. Sung et al., “4.2 PW, 20 fs Ti:sapphire laser at 0.1 Hz,” Opt. Lett. 42, 2058 (2017).10.1364/ol.42.002058 doi: 10.1364/ol.42.002058
    [55]
    J. P. Zou et al., “Design and current progress of the Apollon 10 PW project,” High Power Laser Sci. Eng. 3, e2 (2015).10.1017/hpl.2014.41 doi: 10.1017/hpl.2014.41
    [56]
    B. Rus et al., “ELI-beamlines: Development of next generation short-pulse laser systems,” Proc. SPIE 9515, 95150F (2015).10.1117/12.2184996 doi: 10.1117/12.2184996
    [57]
    R. Dabu, “High power femtosecond lasers at ELI-NP,” AIP Conf. Proc. 1645, 219 (2015).10.1063/1.4909578 doi: 10.1063/1.4909578
    [58]
    E. Cartlidge, “The light fantastic,” Science 359(6374), 382–385 (2018).10.1126/science.359.6374.382 doi: 10.1126/science.359.6374.382
    [59]
    D. Hilscher, U. Jahnke, F. Goldenbaum, L. Pienkowski, J. Galin, and B. Lott, “Neutron production by hadron-induced spallation reactions in thin and thick Pb and U targets from 1 to 5 GeV,” Nucl. Instrum. Methods Phys. Res., Sect. A 414, 100–116 (1998).10.1016/s0168-9002(98)00531-2 doi: 10.1016/s0168-9002(98)00531-2
    [60]
    F. Wagner et al., “Maximum proton energy above 85 MeV from the relativistic interaction of laser pulses with micrometer thick CH2 targets,” Phys. Rev. Lett. 116, 205002 (2016).10.1103/physrevlett.116.205002 doi: 10.1103/physrevlett.116.205002
    [61]
    I. J. Kim et al., “Radiation pressure acceleration of protons to 93 MeV with circularly polarized petawatt laser pulses,” Phys. Plasmas 23, 070701 (2016).10.1063/1.4958654 doi: 10.1063/1.4958654
    [62]
    A. Higginson, “Near-100 MeV protons via a laser-driven transparency-enhanced hybrid acceleration scheme,” Nat. Commun. 9, 724 (2018).10.1038/s41467-018-03063-9 doi: 10.1038/s41467-018-03063-9
    [63]
    [64]
    M. Nakatsutsumi et al., “Fast focusing of short-pulse lasers by innovative plasma optics toward extreme intensity,” Opt. Lett. 35, 2314–2316 (2010).10.1364/ol.35.002314 doi: 10.1364/ol.35.002314
    [65]
    M. Nakatsutsumi et al., “Self-generated surface magnetic fields inhibit laser-driven sheath acceleration of high-energy protons,” Nat. Commun. 9, 280 (2018).10.1038/s41467-017-02436-w doi: 10.1038/s41467-017-02436-w
    [66]
    F. Fiuza et al., “Laser-driven shock acceleration of monoenergetic ion beams,” Phys. Rev. Lett. 109, 215001 (2012).10.1103/physrevlett.109.215001 doi: 10.1103/physrevlett.109.215001
    [67]
    S. N. Chen et al., “Collimated protons accelerated from an overdense gas jet irradiated by a 1 µm wavelength high-intensity short-pulse laser,” Sci. Rep. 7, 13505 (2017).10.1038/s41598-017-12910-6 doi: 10.1038/s41598-017-12910-6
    [68]
    C. M. Brenner et al., “High energy conversion efficiency in laser-proton acceleration by controlling laser-energy deposition onto thin foil targets,” Appl. Phys. Lett. 104, 081123 (2014).10.1063/1.4865812 doi: 10.1063/1.4865812
    [69]
    A. A. Sahai et al., “Relativistically induced transparency acceleration of light ions by an ultrashort laser pulse interacting with a heavy-ion-plasma density gradient,” Phys. Rev. E 88, 043105 (2013).10.1103/physreve.88.043105 doi: 10.1103/physreve.88.043105
    [70]
    H. Y. Wang et al., “High-energy monoenergetic proton beams from two stage acceleration with a slow laser pulse,” Phys. Rev. Spec. Top. - Accel. Beams 18, 021302 (2015).10.1103/physrevstab.18.021302 doi: 10.1103/physrevstab.18.021302
    [71]
    A. V. Brantov et al., “Synchronized ion acceleration by ultraintense slow light,” Phys. Rev. Lett. 116, 085004 (2016).10.1103/physrevlett.116.085004 doi: 10.1103/physrevlett.116.085004
    [72]
    M. L. Zhou et al., “Proton acceleration by single-cycle laser pulses offers a novel monoenergetic and stable operating regime,” Phys. Plasmas 23, 043112 (2016).10.1063/1.4947544 doi: 10.1063/1.4947544
    [73]
    A. V. Brantov et al., “Ion energy scaling under optimum conditions of laser plasma acceleration from solid density targets,” Phys. Rev. Spec. Top. - Accel. Beams 18, 021301 (2015).10.1103/physrevstab.18.021301 doi: 10.1103/physrevstab.18.021301
    [74]
    C. Ellison and J. Fuchs, “Optimizing laser-accelerated ion beams for a collimated neutron source,” Phys. Plasmas 17, 113105 (2010).10.1063/1.3497011 doi: 10.1063/1.3497011
    [75]
    S. Busold et al., “Commissioning of a compact laser-based proton beam line for high intensity bunches around 10 MeV,” Phys. Rev. Spec. Top. - Accel. Beams 17, 031302 (2014).10.1103/physrevstab.17.031302 doi: 10.1103/physrevstab.17.031302
    [76]
    T. Toncian, M. Borghesi, J. Fuchs et al., “Ultrafast laser-driven microlens to focus and energy-select mega-electron volt protons,” Science 312, 410 (2006).10.1126/science.1124412 doi: 10.1126/science.1124412
    [77]
    E. d’Humières, J. Fuchs et al., “Proton acceleration: New developments in energy increase, focusing and energy selection,” AIP Conf. Proc. 877, 41 (2006).10.1063/1.2409119 doi: 10.1063/1.2409119
    [78]
    S. Gordienko, T. Baeva, and A. Pukhov, “Focusing of laser-generated ion beams by a plasma cylinder: Similarity theory and the thick lens formula,” Phys. Plasmas 13, 063103 (2006).10.1063/1.2205191 doi: 10.1063/1.2205191
    [79]
    K. van der Meer et al., “Spallation yields of neutrons produced in thick lead/bismuth targets by protons at incident energies of 420 and 590 MeV,” Nucl. Instrum. Methods Phys. Res., Sect. B 217, 202–220 (2004).10.1016/j.nimb.2003.10.009 doi: 10.1016/j.nimb.2003.10.009
    [80]
    [81]
    T. T. Böhlen et al., “The FLUKA code: Developments and challenges for high energy and medical applications,” Nucl. Data Sheets 120, 211–214 (2014).10.1016/j.nds.2014.07.049 doi: 10.1016/j.nds.2014.07.049
    [82]
    A. Couture and R. Reifarth, “Direct measurements of neutron capture on radioactive isotopes,” At. Data Nucl. Data Tables 93, 807 (2007).10.1016/j.adt.2007.06.003 doi: 10.1016/j.adt.2007.06.003
    [83]
    S. Mirfayzi et al., “Calibration of time of flight detectors using laser-driven neutron source,” Rev. Sci. Instrum. 86, 073308 (2015).10.1063/1.4923088 doi: 10.1063/1.4923088
    [84]
    A. Alejo et al., “High flux, beamed neutron sources employing deuteron-rich ion beams from D2O-ice layered targets,” Plasma Phys. Controlled Fusion 59, 064004 (2017).10.1088/1361-6587/aa684a doi: 10.1088/1361-6587/aa684a
    [85]
    P. A. Norreys et al., “Neutron production from picosecond laser irradiation of deuterated targets at intensities of 1019 W cm−2,” Plasma Phys. Controlled Fusion 40, 175 (1998).10.1088/0741-3335/40/2/001 doi: 10.1088/0741-3335/40/2/001
    [86]
    R. K. Fisher et al., “High-resolution neutron imaging of laser fusion targets using bubble detectors,” Phys. Plasmas 9, 2182–2185 (2002).10.1063/1.1456931 doi: 10.1063/1.1456931
    [87]
    M. Storm et al., “Fast neutron production from lithium converters and laser driven protons,” Phys. Plasmas 20, 053106 (2013).10.1063/1.4803648 doi: 10.1063/1.4803648
    [88]
    C. Zulick et al., “Energetic neutron beams generated from femtosecond laser plasma interactions,” Appl. Phys. Lett. 102, 124101 (2013).10.1063/1.4795723 doi: 10.1063/1.4795723
    [89]
    J. M. Gómez-Ros et al., “CYSP: A new cylindrical directional neutron spectrometer. Conceptual design,” Radiat. Meas. 82, 47–51 (2015).10.1016/j.radmeas.2015.07.005 doi: 10.1016/j.radmeas.2015.07.005
    [90]
    D. Maire et al., “Development of a µ-TPC detector as a standard instrument for low-energy neutron field characterisation,” Radiat. Prot. Dosim. 161, 245–248 (2014).10.1093/rpd/ncu009 doi: 10.1093/rpd/ncu009
    [91]
    [92]
    V. I. Zagrebaev, A. V. Karpov, I. N. Mishustin, and W. Greiner, “Production of heavy and superheavy neutron-rich nuclei in neutron capture processes,” Phys. Rev. C 84, 044617 (2011).10.1103/physrevc.84.044617 doi: 10.1103/physrevc.84.044617
    [93]
    M. D. Rosen et al., “Exploding-foil technique for achieving a soft X-ray laser,” Phys. Rev. Lett. 54, 106 (1985).10.1103/physrevlett.54.106 doi: 10.1103/physrevlett.54.106
    [94]
    K. H. Guber et al., “Neutron cross section measurements at the spallation neutron source,” J. Nucl. Sci. Tech. 39, 638–641 (2002).10.1080/00223131.2002.10875180 doi: 10.1080/00223131.2002.10875180
    [95]
    S. N. Chen et al., “Density and temperature characterization of long-scale length, near-critical density controlled plasma produced from ultra-low density plastic foam,” Sci. Rep. 6, 21495 (2016).10.1038/srep21495 doi: 10.1038/srep21495
    [96]
    S. Gales et al., “New frontiers in nuclear physics with high-power lasers and brilliant monochromatic gamma beams,” Phys. Scr. 91, 093004 (2016).10.1088/0031-8949/91/9/093004 doi: 10.1088/0031-8949/91/9/093004
    [97]
    J. Pereira et al., “β-decay half-lives and β-delayed neutron emission probabilities of nuclei in the region A ≲ 100 relevant for the r process,” Phys. Rev. C 79, 035806 (2009).10.1103/physrevc.79.035806 doi: 10.1103/physrevc.79.035806
    [98]
    A. Paulsen, Utility and Use of Neutron Capture Cross Section Standards and the Status of the Au(n,γ) Standard (National Bureau of Standards Special Publication, 1977), Vol. 493, p. 165.
    [99]
    J. Escher et al., “Compound-nuclear reaction cross sections from surrogate measurements,” Rev. Mod. Phys. 84, 353–397 (2012).10.1103/revmodphys.84.353 doi: 10.1103/revmodphys.84.353
    [100]
    S. N. Liddick et al., “Experimental neutron capture rate constraint far from stability,” Phys. Rev. Lett. 116, 242502 (2016).10.1103/physrevlett.116.242502 doi: 10.1103/physrevlett.116.242502
    [101]
    R. Hamm, “Review of industrial accelerators and their applications,” in IAEA Proceedings Series, Paper AP/IA-12, STI/PUB/1433 (IAEA, 2010), ISBN: 978-92-0-150410-4.
    [102]
    V. Dangendorf et al., “Detectors for energy-resolved fast-neutron imaging,” Nucl. Instrum. Methods Phys. Res. Sect. A 535, 93 (2004).10.1016/j.nima.2004.07.187 doi: 10.1016/j.nima.2004.07.187
    [103]
    D. C. Swift et al., “Explanation of anomalous shock temperatures in shock-loaded Mo samples measured using neutron resonance spectroscopy,” Phys. Rev. B 77, 092102 (2008).10.1103/physrevb.77.092102 doi: 10.1103/physrevb.77.092102
    [104]
    N. Guler et al., “Neutron imaging with the short-pulse laser driven neutron source at the Trident laser facility,” J. Appl. Phys. 120, 154901 (2016).10.1063/1.4964248 doi: 10.1063/1.4964248
    [105]
    L. J. Perkins et al., “The investigation of high intensity laser driven micro neutron sources for fusion materials research at high fluence,” Nucl. Fusion 40, 1 (2000).10.1088/0029-5515/40/1/301 doi: 10.1088/0029-5515/40/1/301
    [106]
    J. D. Sethian et al., “An overview of the development of the first wall and other principal components of a laser fusion power plant,” J. Nucl. Mater. 347, 161 (2005).10.1016/j.jnucmat.2005.08.019 doi: 10.1016/j.jnucmat.2005.08.019
    [107]
    U. Fischer et al., “Evaluation and validation of d–Li cross section data for the IFMIF neutron source term simulation,” J. Nucl. Mater. 367-370, 1531 (2007).10.1016/j.jnucmat.2007.04.038 doi: 10.1016/j.jnucmat.2007.04.038
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article Metrics

    Article views (141) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return