Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 4 Issue 1
Jan.  2019
Turn off MathJax
Article Contents
Lorenz S., Grittani G., Chacon-Golcher E., Lazzarini C. M., Limpouch J., Nawaz F., Nevrkla M., Vilanova L., Levato T.. Characterization of supersonic and subsonic gas targets for laser wakefield electron acceleration experiments[J]. Matter and Radiation at Extremes, 2019, 4(1): 015401. doi: 10.1063/1.5081509
Citation: Lorenz S., Grittani G., Chacon-Golcher E., Lazzarini C. M., Limpouch J., Nawaz F., Nevrkla M., Vilanova L., Levato T.. Characterization of supersonic and subsonic gas targets for laser wakefield electron acceleration experiments[J]. Matter and Radiation at Extremes, 2019, 4(1): 015401. doi: 10.1063/1.5081509

Characterization of supersonic and subsonic gas targets for laser wakefield electron acceleration experiments

doi: 10.1063/1.5081509
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: gabrielemaria.grittani@eli-beams.eu
  • Received Date: 2018-05-16
  • Accepted Date: 2018-08-14
  • Available Online: 2021-04-13
  • Publish Date: 2019-01-15
  • The choice of the correct density profile is crucial in laser wakefield acceleration. In this work, both subsonic and supersonic gas targets are characterized by means of fluid-dynamic simulations and experimental interferometric measurements. The gas targets are studied in different configurations, and the density profiles most suitable for laser wakefield acceleration are discussed.
  • loading
  • [1]
    T. Tajima and J. M. Dawson, “Laser electron accelerator,” Phys. Rev. Lett. 43(4), 267–270 (1979).10.1103/PhysRevLett.43.267 doi: 10.1103/PhysRevLett.43.267
    [2]
    J. Faure et al., “A laser-plasma accelerator producing monoenergetic electron beams,” Nature 431, 541–544 (2004).10.1038/nature02963 doi: 10.1038/nature02963
    [3]
    C. G. R. Geddes et al., “High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding,” Nature 431, 538–541 (2004).10.1038/nature02900 doi: 10.1038/nature02900
    [4]
    S. P. D. Mangles et al., “Monoenergetic beams of relativistic electrons from intense laser plasma interactions,” Nature 431, 535–538 (2004).10.1038/nature02939 doi: 10.1038/nature02939
    [5]
    W. P. Leemans et al., “GeV electron beams from a centimetre-scale accelerator,” Nat. Phys. 2, 696–699 (2006).10.1038/nphys418 doi: 10.1038/nphys418
    [6]
    W. P. Leemans et al., “Multi-GeV electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime,” Phys. Rev. Lett. 113, 245002 (2014).10.1103/PhysRevLett.113.245002 doi: 10.1103/PhysRevLett.113.245002
    [7]
    O. Lundh et al., “Few femtosecond, few kiloampere electron bunch produced by a laser plasma accelerator,” Nat. Phys. 7, 219–222 (2011).10.1038/nphys1872 doi: 10.1038/nphys1872
    [8]
    E. Esarey, C. B. Schroeder, and W. P. Leemans, “Physics of laser-driven plasma-based electron accelerators,” Rev. Mod. Phys. 81, 1229–1285 (2009).10.1103/RevModPhys.81.1229 doi: 10.1103/RevModPhys.81.1229
    [9]
    W. Lu et al., “Generating multi-Gev electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime,” Phys. Rev. Spec. Top.--Accel. Beams 10, 061301 (2007).10.1103/PhysRevSTAB.10.061301 doi: 10.1103/PhysRevSTAB.10.061301
    [10]
    A. J. Gonsalves et al., “Tunable laser plasma accelerator based on longitudinal density tailoring,” Nat. Phys. 7, 862–866 (2011).10.1038/nphys207110.1038/nphys2071 doi: 10.1038/nphys207110.1038/nphys2071
    [11]
    C. Thaury et al., “Shock assisted ionization injection in laser-plasma accelerators,” Sci. Rep. 5, 16310 (2015).10.1038/srep16310 doi: 10.1038/srep16310
    [12]
    F. Salehi et al., “MeV electron acceleration at 1 kHz with <10 mJ laser pulses,” Front. Opt. 42, 215–218 (2017).10.1364/FIO.2017.FM2B.2 doi: 10.1364/FIO.2017.FM2B.2
    [13]
    D. Guenot et al., “Relativistic electron beams driven by kHz single-cycle light pulses,” Nat. Photonics 11, 293–296 (2017).10.1038/nphoton.2017.46 doi: 10.1038/nphoton.2017.46
    [14]
    J. D. Anderson, Jr., Modern Compressible Flow with Historical Perspective, 2nd ed. (Mc Graw Hill, 1989).
    [15]
    S. Semushin and V. Malka, “High density gas jet nozzle design for laser target production,” Rev. Sci. Instrum. 72, 2961–2965 (2001).10.1063/1.1380393 doi: 10.1063/1.1380393
    [16]
    F. Sylla et al., “Development and characterization of very dense submillimetric gas jets for laser-plasma interaction,” Rev. Sci. Instrum. 83(3), 033507 (2012).10.1063/1.3697859 doi: 10.1063/1.3697859
    [17]
    F. Brandi and F. Giammanco, “Temporal and spatial characterization of a pulsed gas jet by a compact high-speed high-sensitivity second-harmonic interferometer,” Opt. Express 19(25), 25479–25487 (2011).10.1364/OE.19.025479 doi: 10.1364/OE.19.025479
    [18]
    A. Adelmann et al., “Real-time tomography of gas-jets with a Wollaston interferometer,” Appl. Sci. 8(3), 443 (2018).10.3390/app8030443 doi: 10.3390/app8030443
    [19]
    J. Couperus et al., “Tomographic characterisation of gas-jet targets for laser wakefield acceleration,” Nucl. Instrum. Methods Phys. Res., Sect. A 830, 504–509 (2016).10.1016/j.nima.2016.02.099 doi: 10.1016/j.nima.2016.02.099
    [20]
    G. Grittani et al., “High energy electrons from interaction with a structured gas-jet at FLAME,” Nucl. Instrum. Methods Phys. Res., Sect. A 740, 257–265 (2014).10.1016/j.nima.2013.10.082 doi: 10.1016/j.nima.2013.10.082
    [21]
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views (97) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return