Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 4 Issue 1
Jan.  2019
Turn off MathJax
Article Contents
Wang Xinxin. Research at Tsinghua University on electrical explosions of wires[J]. Matter and Radiation at Extremes, 2019, 4(1): 017201. doi: 10.1063/1.5081450
Citation: Wang Xinxin. Research at Tsinghua University on electrical explosions of wires[J]. Matter and Radiation at Extremes, 2019, 4(1): 017201. doi: 10.1063/1.5081450

Research at Tsinghua University on electrical explosions of wires

doi: 10.1063/1.5081450
More Information
  • Corresponding author: a)Author to whom correspondence should be addressed: wangxx@tsinghua.edu.cn
  • Received Date: 2018-06-26
  • Accepted Date: 2018-09-24
  • Available Online: 2021-04-13
  • Publish Date: 2019-01-15
  • Electrical explosion of a wire (EEW) has been investigated for more than ten years at Tsinghua University, and the main results are reviewed in this paper. Based on EEW in vacuum, an X-pinch was used as an x-ray source for phase-contrast imaging of small insects such as mosquitoes and ants in which it was possible to observe clearly their detailed internal structures, which can never be seen with conventional x-ray radiography. Electrical explosion of a wire array (EEWA) in vacuum is the initial stage in the formation of a wire-array Z-pinch. The evolution of EEWA was observed with x-ray backlighting using two X-pinches as x-ray sources. It was found that each wire in an EEWA exhibits a core–corona structure instead of forming a fully vaporized metallic vapor. This structure is detrimental to the plasma implosion of a Z-pinch. By inserting an insulator as a flashover switch into the cathode, formation of a core–corona structure was suppressed and core-free EEWA was realized. EEW in gases was used for nanopowder production. Three parameters (vaporization rate, gas pressure, and energy deposited in the exploding plasma) were found to influence the nanoparticle size. EEW in water was used for shock-wave generation. The shock wave generated by melting could be recorded with a piezoelectric gauge only in underheat EEW. For EEW with a given stored energy but different energy-storage capacitor banks, the small capacitor bank produced a rapidly rising current that deposited more energy into the wire and generated a stronger shock wave.
  • loading
  • [1]
    W. G. Chance and H. K. Moore, Exploding Wires (Plenum Press, 1962).
    [2]
    S. A. Pikuz, T. A. Shelkovenko, and D. A. Hammer, “X-pinch. Part 1,” Plasma Phys. Rep. 41, 291 (2015).10.1134/S1063780X15040054 doi: 10.1134/S1063780X15040054
    [3]
    S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, and A. W. Stevenson, “Phase-contrast imaging using polychromatic hard x-rays,” Nature 384, 335 (1996).10.1038/384335a0 doi: 10.1038/384335a0
    [4]
    R. Fitzgerald, “Phase-sensitive x-ray imaging,” Phys. Today 53(7), 23 (2000).10.1063/1.1292471 doi: 10.1063/1.1292471
    [5]
    R. Liu, X. X. Wang, X. B. Zou, N. G. Zeng, and L. Y. He, “Phase-contrast imaging of a soft biological object using x-pinch as x-ray source,” Europhys. Lett. 83, 25002 (2008).10.1209/0295-5075/83/25002 doi: 10.1209/0295-5075/83/25002
    [6]
    H. G. Haines, “A review of the dense Z-pinch,” Plasma Phys. Control. Fusion 53, 093001 (2011).10.1088/0741-3335/53/9/093001 doi: 10.1088/0741-3335/53/9/093001
    [7]
    C. Deeney, M. R. Douglas, R. B. Spielman, T. J. Nash, D. L. Peterson et al., “Enhancement of x-ray power from a Z pinch using nested-wire arrays,” Phys. Rev. Lett. 81, 4883 (1998).10.1103/physrevlett.81.4883 doi: 10.1103/physrevlett.81.4883
    [8]
    T. Zhao, X. Zou, R. Zhang, and X. Wang, “X-ray backlighting of two-wire Z-pinch plasma using X-pinch,” Chin. Phys. B 19, 075205 (2010).10.1088/1674-1056/19/7/075205 doi: 10.1088/1674-1056/19/7/075205
    [9]
    X. Zou, R. Liu, N. Zeng, M. Han, J. Yuan et al., “Pulsed power generator for X-pinch,” Laser Part. Beams 24, 503 (2006).10.1017/s0263034606060666 doi: 10.1017/s0263034606060666
    [10]
    S. V. Lebedev, F. N. Beg, S. N. Bland, J. P. Chittenden, A. E. Dangor et al., “Effect of discrete wires on the implosion dynamics of wire array Z pinches,” Phys. Plasmas 8, 3734 (2001).10.1063/1.1385373 doi: 10.1063/1.1385373
    [11]
    A. J. Harvey-Thompson, S. V. Lebedev, G. Burdiak, E. M. Waisman, G. N. Hall et al., “Suppression of the ablation phase in wire array Z pinches using a tailored current prepulse,” Phys. Rev. Lett. 106, 205002 (2011).10.1103/physrevlett.106.205002 doi: 10.1103/physrevlett.106.205002
    [12]
    G. S. Sarkisov, S. E. Rosenthal, K. W. Struve, and D. H. McDaniel, “Corona-free electrical explosion of polyimide-coated tungsten wire in vacuum,” Phys. Rev. Lett. 94, 035004 (2005).10.1103/physrevlett.94.035004 doi: 10.1103/physrevlett.94.035004
    [13]
    E. V. Grabovskii, A. N. Gribov, K. N. Mitrofanov, G. M. Oleinik, I. Yu. Porofeev et al., “Influence of the current growth rate on the polarity effect in a wire array in the angara-5-1 facility,” Plasma Phys. Rep. 33, 923 (2007).10.1134/s1063780x07110049 doi: 10.1134/s1063780x07110049
    [14]
    G. S. Sarkisov, S. E. Rosenthal, K. W. Struve, T. E. Cowan, R. Presura et al., “Effect of current prepulse on wire array initiation on the 1-MA ZEBRA accelerator,” Phys. Plasmas 14, 052704 (2007).10.1063/1.2734575 doi: 10.1063/1.2734575
    [15]
    H. Shi, X. Zou, and X. Wang, “Fully vaporized electrical explosion of bare tungsten wire in vacuum,” Appl. Phys. Lett. 109, 134105 (2016).10.1063/1.4963758 doi: 10.1063/1.4963758
    [16]
    Y. A. Kotov, “Electric explosion of wires as a method for preparation of nanopowders,” J. Nanopart. Res. 5, 539 (2003).10.1023/b:nano.0000006069.45073.0b doi: 10.1023/b:nano.0000006069.45073.0b
    [17]
    W. H. Jiang and K. Yatsui, “Pulsed wire discharge for nanosize powder synthesis,” IEEE Trans. Plasma Sci. 26, 1498 (1998).10.1109/27.736045 doi: 10.1109/27.736045
    [18]
    C. H. Cho, S. H. Park, Y. W. Choi et al., “Production of nanopowders by wire explosion in liquid media,” Surf. Coat. Technol. 201, 4847 (2007).10.1016/j.surfcoat.2006.07.032 doi: 10.1016/j.surfcoat.2006.07.032
    [19]
    X. B. Zou, Z. G. Mao, X. X. Wang, and W. H. Jiang, “Two different modes of wire explosion for nanopowder production,” Europhys. Lett. 97, 35004 (2012).10.1209/0295-5075/97/35004 doi: 10.1209/0295-5075/97/35004
    [20]
    Ya. E. Krasik, A. Fedotov, D. Sheftman, S. Efimov, A. Sayapin et al., “Underwater electrical wire explosion,” Plasma Sources Sci. Technol. 19, 034020 (2010).10.1088/0963-0252/19/3/034020 doi: 10.1088/0963-0252/19/3/034020
    [21]
    O. Antonov, S. Efimov, D. Yanuka, M. Kozlov, V. Tz. Gurovich, and Ya. E. Krasik, “Generation of converging strong shock wave formed by microsecond timescale underwater electrical explosion of spherical wire array,” Appl. Phys. Lett. 102, 124104 (2013).10.1063/1.4798827 doi: 10.1063/1.4798827
    [22]
    Ya. E. Krasik, S. Efimov, D. Sheftman, A. Fedotov, O. Antonov et al., “Underwater electrical explosion of wire and wire arrays and generation of converging shock waves,” IEEE Trans. Plasma Sci. 44, 412 (2016).10.1109/tps.2015.2513757 doi: 10.1109/tps.2015.2513757
    [23]
    Ya. E. Krasik, A. Grinenko, A. Sayapin, S. Efimov, A. Fedotov et al., “Underwater electrical wire explosion and its applications,” IEEE Trans. Plasma Sci. 36, 423 (2008).10.1109/tps.2008.918766 doi: 10.1109/tps.2008.918766
    [24]
    L. Li, D. Qian, X. Zou, and X. Wang, “Effect of deposition energy on underwater electrical wire explosion,” IEEE Trans. Plasma Sci. 46, 3444 (2018).10.1109/tps.2018.2811124 doi: 10.1109/tps.2018.2811124
    [25]
    L. Li, D. Qian, X. Zou, and X. Wang, “Underwater electrical wire explosion: Shock wave from melting being overtaken by shock wave from vaporization,” Phys. Plasmas 25, 053502 (2018).10.1063/1.5028507 doi: 10.1063/1.5028507
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(18)  / Tables(1)

    Article Metrics

    Article views (211) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return