Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 3 Issue 6
Nov.  2018
Turn off MathJax
Article Contents
Yang Jianhua, Zhang Zicheng, Yang Hanwu, Zhang Jun, Liu Jinliang, Yin Yi, Xun Tao, Cheng Xinbing, Fan Yuwei, Jin Zhenxing, Ju Jinchuan. Compact intense electron-beam accelerators based on high energy density liquid pulse forming lines[J]. Matter and Radiation at Extremes, 2018, 3(6). doi: 10.1016/j.mre.2018.07.002
Citation: Yang Jianhua, Zhang Zicheng, Yang Hanwu, Zhang Jun, Liu Jinliang, Yin Yi, Xun Tao, Cheng Xinbing, Fan Yuwei, Jin Zhenxing, Ju Jinchuan. Compact intense electron-beam accelerators based on high energy density liquid pulse forming lines[J]. Matter and Radiation at Extremes, 2018, 3(6). doi: 10.1016/j.mre.2018.07.002

Compact intense electron-beam accelerators based on high energy density liquid pulse forming lines

doi: 10.1016/j.mre.2018.07.002
More Information
  • Corresponding author: **Corresponding author. College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, People's Republic of China. E-mail addresses: jianhua.yang@nudt.edu.cn (J. Yang), zczhang@nudt.edu.cn (Z. Zhang).; *Corresponding author. College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, People's Republic of China.
  • Received Date: 2018-01-02
  • Accepted Date: 2018-07-20
  • Publish Date: 2018-11-15
  • This paper provides a review of the compact intense electron-beam accelerators (IEBAs) based on liquid pulse forming lines (PFLs) that have been developed at the National University of Defense Technology (NUDT) in China. The history and roadmap of the compact IEBAs used to drive high-power microwave (HPM) devices at NUDT are reviewed. The properties of both de-ionized water and glycerin as energy storage media are presented. Research into the breakdown properties of liquid dielectrics and the desire to maximize energy storage have resulted in the invention of several coaxial PFLs with different electromagnetic structures, which are detailed in this paper. These high energy density liquid PFLs have been used to increase the performance of IEBA subsystems, based on which the SPARK (Single Pulse Accelerator with spark gaps) and HEART (High Energy-density Accelerator with Repetitive Transformer) series of IEBAs were constructed. This paper also discusses how these compact IEBAs have been used to drive typical HPM devices and concludes by summarizing the associated achievements and the conclusions that can be drawn from the results.
  • loading
  • [1]
    J. Benford, J. Swegle, E. Schamiloglu, High Power Microwaves, 2nd, CRC Press, New York, 2007.
    [2]
    S.D. Korovin, V.V. Rostov, High-current nanosecond pulse-periodic electron accelerators utilizing a tesla transformer, Russ. Phys. J. 39 (12) (1996) 1177–1185.10.1007/bf02436160
    [3]
    X.X. Song, G.Z. Liu, J.C. Peng, J.C. Su, L.M. Wang, et al., A repetitive high-current pulsed accelerator—TPG700, in: IEEE International Conference on High Power Particle Beams, 2008, pp. 1–5.
    [4]
    Y.H. Zhang, A.B. Chang, F. Xiang, F.L. Song, Q. Kang, et al., Repetition rate of intense current electron-beam diodes using 20 GW pulsed source, Chin. Phys. Soc. 56 (10) (2007) 5754–5757.
    [5]
    C.L. Li, L.G. Shen, C.H. Liu, C.Y. Liu, Q.L. Zhang, et al., The 81-7M-01 intense relativistic electron beam accelerator, J. Natl. Univ. Def. Technol. 15 (sl) (1993) 1–10.
    [6]
    L.G. Shen, C.L. Li, Y.P. He, The Calculation of the charging voltage waveform and pre-pulse voltage waveform produced by the Marx generator charging Blumlein line, J. Natl. Univ. Def. Technol. 15 (sl) (1993) 23–32.
    [7]
    L.G. Shen, C.L. Li, Y.G. Liu, 81-7M-01--A two-beams accelerator, in: IEEE International Pulsed Power Conference Digest of Technical Papers, 1, 1997, pp. 355–360.
    [8]
    C.L. Li, X.Y. Peng, Y.G. Liu, The mode analysis of the cylindrical cavity in a virtual cathode oscillator (vircator), J. Natl. Univ. Def. Technol. 15 (sl) (1993) 62–70.
    [9]
    H.H. Zhong, C.L. Li, Y.G. Liu, Study on high power microwave produced by virtual cathode oscillator(vircator), J. Natl. Univ. Def. Technol. 17 (sl) (1995) 66–69.
    [10]
    B.L. Qian, Y.G. Liu, C.L. Li, C.B. Liu, Two-dimensional analysis of the relativistic parapotential electron flow in a magnetically insulated transmission line oscillator (MILO), IEEE Trans. Plasma Sci. 28 (2000) 760–766.10.1109/27.887718
    [11]
    Y.W. Fan, Research on Magnetically Insulated Transmission Line Oscillator and its Related Technology, National University of Defense Technology, 2008, Doctoral Dissertation.
    [12]
    T. Shu, Z.Q. Li, C.W. Yuan, J.H. Yang, L.R. Xu, et al., Experiment on vircator operated in TM01 mode, High Power Laser Part. Beams 17 (8) (2005) 1163–1166.
    [13]
    J.H. Yang, D.Q. Chen, J.D. Zhang, J.L. Liu, S.G. Cao, et al., Electro-circuit simulation and experimental studies of PFL charged by MFCG, High Power Laser Part. Beams 16 (4) (2004) 496–500.
    [14]
    J.H. Yang, H.W. Yang, Z.Q. Li, T. Shu, J.D. Zhang, et al., Pre-pulse phenomena in pulse forming line charging-up by long pulse energy sources through a transformer, High Power Laser Part. Beams 16 (7) (2004) 900–904.
    [15]
    X.S. Liu, High Power Pulse Technology, National Defense Industry Press, 2005.
    [16]
    L.G. Shen, Introduction of Pulse Power Technology, National University of Defense Technology, 1989.
    [17]
    H. Yang, J. Xu, J. Zhang, H. Zhong, Y. Wang, et al., Experiments of a 30 GW, 100 ns compact e-beam accelerator, in: IET European Pulsed Power Conference, 2009, pp. 1–4.
    [18]
    Y.W. Fan, X.Y. Wang, L. He, H.H. Zhong, J.D. Zhang, A tunable magnetically insulated transmission line oscillator, Chin. Phys. B 24 (3) (2015) 035203.10.1088/1674-1056/24/3/035203
    [19]
    J.H. Yang, H.H. Zhong, T. Shu, J.D. Zhang, J. Zhang, Research on a long-pulse intense electron beam repetitive accelerator, in: 2nd China Pulse Power Conference, 2011.
    [20]
    J.H. Yang, H.H. Zhong, T. Shu, J.D. Zhang, J. Zhang, et al., Research on an intense electron beam repetitive accelerator based on super-capacitors, in: 3rd China Pulse Power Conference, 2013.
    [21]
    S.T. Pai, Q. Zhang, Advance series in electrical and computer engineering, in: Introduction to High Power Pulse Technology, vol. 10, World Scientific Publishing Co., 2015.
    [22]
    J.H. Yang, J.M. Gao, T. Shu, H.F. Luo, J.J. Lin, A novel compact double pulse forming lines, Rev. Sci. Instrum. 84 (6) (2013) 064706.10.1063/1.4808371
    [23]
    J.Y. Geng, J.H. Yang, X.B. Cheng, X. Yang, R. Chen, The development of high-voltage repetitive low - jitter corona stabilized triggered switch, Rev. Sci. Instrum. 89, 044705 (2018).10.1063/1.5011089
    [24]
    Z.C. Zhang, J.D. Zhang, J.H. Yang, Influence of low speed rolling movement on high electrical break down for water dielectric with microsecond charging, Plasma Sci. Technol. 8 (2) (2006) 195–197.10.1088/1009-0630/8/2/15
    [25]
    Z.C. Zhang, J.D. Zhang, J.H. Yang, Experimental study on high electrical breakdown of water dielectric, Plasma Sci. Technol 7 (6) (2005) 3161–3165.10.1088/1009-0630/7/6/022
    [26]
    Z.C. Zhang, J.H. Yang, J.D. Zhang, J.L. Liu, J.F. Pu, et al., Investigation of high electrical breakdown for pressurized water dielectric with microsecond charging, High Power Laser Part. Beams 17 (5) (2005) 761–764.
    [27]
    Z. Zhang, J. Yang, J. Zhang, X. Zhou, Influence of polished surface of electrodes on high electrical breakdown in pressurized water dielectric, High. Volt. Eng. 31 (10) (2005) 52–54.
    [28]
    J.H. Yang, H.M. Ren, J.M. Gao, J. Wen, Z. Xiang, et al., Experimental study on the electric characteristics of the deionized water and its mixture with ethylene glycol in tens microsecond regime and its application, in: IEEE International Conference on Dielectric Liquids, 2011.
    [29]
    X. Yang, J.H. Yang, X.B. Cheng, J.J. Lin, H.B. Zhang, Investigation of the magnetic field space-time distribution in the air-core pulse transformer, in: Progress in Electromagnetics Research Symposium, 2014.
    [30]
    X. Yang, Study on the Effects of Magnetic Field and Electrode on the Breakdown of Glycerin, National University of Defense Technology, 2014. Dissertation.
    [31]
    Y.Z. Shao, J.H. Yang, X.B. Cheng, Study on coaxial spiral Blumlein output waveform optimization, in: 4th China Pulse Power Conference, 2015.
    [32]
    Y. Yin, T.Y. Zhang, Z.Q. Li, J.H. Yang, Y.F. Min, et al., Investigation of a 100kV compact resonance high power charging system, in: 5th China Pulse Power Conference, 2017, pp. 385–389.
    [33]
    J.H. Yang, T. Shu, J.D. Zhang, H.M. Ren, X. Zhou, et al., Charging process of pulse forming line with capacitor through transformer, High Power Laser Part. Beams 22 (11) (2010) 2783–2788.
    [34]
    J.H. Yang, H.H. Zhong, T. Shu, J.D. Zhang, J.M. Gao, et al., Investigation of repetitive operation of pulse generator driven by storage energy, Chin. Nucl. Soc. (2009) 03-H01-0020.
    [35]
    J.L. Liu, J.D. Zhang, Y.Z. Li, J.J. Li, J.H. Feng, High voltage pulse transformer for PFL charging, High Power Laser Part. Beams 15 (4) (2003) 394–396.
    [36]
    Z. Zhang, H. Yang, J. Yang, D. Chen, Compact megavolt pulse transformer with inner magnetic core and conical secondary windings, in: IEEE Pulsed Power Conference, 2015, pp. 1–5.
    [37]
    J.H. Yang, H.H. Zhong, T. Shu, J.D. Zhang, J.L. Liu, et al., Water-dielectric Blumlein type of PFL with spiral line, High Power Laser Part. Beams 17 (8) (2005) 1191–1194.
    [38]
    J. Liu, Y. Yin, B. Ge, X. Cheng, J. Feng, et al., A compact high power pulsed modulator based on spiral Blumlein line, Rev. Sci. Instrum. 78 (10) (2007) 103302.10.1063/1.2800751
    [39]
    J. Lin, J. Yang, J. Zhang, X. Chen, An all solid-state high-voltage ns trigger generator based on magnetic pulse compression and transmission line transformer, Rev. Sci. Instrum. 84 (9) (2013) 093306.10.1063/1.4822272
    [40]
    J. Lin, J. Zhang, J. Yang, H. Zhang, Y. Qiu, et al., Jitter characteristic of series magnetic pulse compressor employed in ns trigger generator, Rev. Sci. Instrum. 85 (5) (2014) 053302−053302-4.10.1063/1.4874003
    [41]
    J. Lin, J. Yang, J. Zhang, H. Zhang, Slightly uneven electric field trigatron employed in tens of microseconds charging time, Rev. Sci. Instrum. 85 (9) (2014) 093507.10.1063/1.4895831
    [42]
    J. Chen, J.H. Yang, T. Shu, J.D. Zhang, X. Zhou, et al., Primary power supply of repetitive pulse intense current accelerator charged by capacitance of energy store, High Power Laser Part. Beams 20 (8) (2008) 1405–1408.
    [43]
    Y. Qiu, J. Liu, J. Yang, X. Cheng, X. Yang, A compact control system to achieve stable voltage and low jitter trigger for repetitive intense electron-beam accelerator based on resonant charging, AIP Adv. 7 (8) (2017) 085223.10.1063/1.4994853
    [44]
    T. Xun, H. Yang, J. Zhang, Z. Zhang, Effects of vacuum pressures on the performance of a velvet cathode under repetitive high-current pulse discharges, Vacuum 85 (2) (2010) 322–326.10.1016/j.vacuum.2010.07.004
    [45]
    Z. Jin, J. Zhang, J. Yang, H. Zhong, B. Qian, et al., A repetitive S-band long-pulse relativistic backward-wave oscillator, Rev. Sci. Instrum. 82 (8) (2011) 084704.10.1063/1.3622520
    [46]
    Y.W. Fan, T. Shu, Y. Wang, Z.Q. Li, J.J. Zhou, et al., Experimental design of a compact L-band magnetically insulated transmission line oscillator, High Power Laser Part. Beams 65 (3) (2004) 938–940.
    [47]
    Y.W. Fan, C.W. Yuan, H.H. Zhong, T. Shu, J.D. Zhang, et al., Experimental investigation of an improved MILO, IEEE Trans. Plasma Sci. 35 (4) (2007) 1075–1080.10.1109/tps.2007.902026
    [48]
    Y.W. Fan, H.H. Zhong, H.W. Yang, Z.Q. Li, T. Shu, et al., Analysis and improvement of an X-band magnetically insulated transmission line oscillator, J. Appl. Phys. 103 (12) (2008) 123301.10.1063/1.2940129
    [49]
    Y.W. Fan, C.W. Yuan, H.H. Zhong, T. Shu, L. Luo, Simulation investigation of an improved MILO, IEEE Trans. Plasma Sci. 35 (2) (2007) 379–383.10.1109/tps.2007.891619
    [50]
    Y.W. Fan, X.Y. Wang, Z.C. Zhang, T. Xun, H.W. Yang, A high-efficiency repetitively pulsed magnetically insulated transmission line oscillator, Vacuum 128 (2016) 39–44.10.1016/j.vacuum.2016.03.006
    [51]
    J. Zhang, H.H. Zhong, Z. Jin, T. Shu, S. Cao, et al., Studies on efficient operation of an X-band oversized slow-wave HPM generator in low magnetic field, IEEE Trans. Plasma Sci. 37 (8) (2009) 1552–1557.
    [52]
    J. Zhang, Z.X. Jin, J.H. Yang, H.H. Zhong, T. Shu, et al., Recent advance in long-pulse HPM sources with repetitive operation in S-, C-, and X-Bands, IEEE Trans. Plasma Sci. 39 (6) (2011) 1438–1445.10.1109/tps.2011.2129536
    [53]
    X. Ge, H. Zhong, B. Qian, J. Zhang, L. Gao, et al., An L-band coaxial relativistic backward wave oscillator with mechanical frequency tunability, Appl. Phys. Lett. 97 (10) (2010) 10150310.1063/1.3488353
    [54]
    G. Li, T. Shu, J. Zhang, J. Yang, C. Yuan, Generation of gigawatt level beat waves, Appl. Phys. Lett. 96 (23) (2010) 234102.10.1063/1.3449134
    [55]
    Z. Qi, J. Zhang, H. Zhong, Q. Zhang, D. Zhu, An improved suppression method of the transverse-electromagnetic mode leakage with two reflectors in the triaxial klystron amplifier, Phys. Plasmas 21 (7) (2014) 3724.10.1063/1.4889901
    [56]
    J. Ju, J. Zhang, T. Shu, H. Zhong, An improved X-band triaxial klystron amplifier for gigawatt long-pulse high power microwave generation, IEEE Electron. Device Lett. (2017) 99.
    [57]
    J. Ju, J. Zhang, Z. Qi, J. Yang, T. Shu, et al., Towards coherent combining of X-band high power microwaves: phase-locked long pulse radiations by a relativistic triaxial klystron amplifier, Sci. Rep. 6 (2016) 30657.10.1038/srep30657
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(20)

    Article Metrics

    Article views (227) PDF downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return