Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 3 Issue 6
Nov.  2018
Turn off MathJax
Article Contents
Wu D., Yu W., Zhao Y.T., Fritzsche S., He X.T.. Characteristics of X/γ-ray radiations by intense laser interactions with high-Z solids: The role of bremsstrahlung and radiation reactions[J]. Matter and Radiation at Extremes, 2018, 3(6). doi: 10.1016/j.mre.2018.06.002
Citation: Wu D., Yu W., Zhao Y.T., Fritzsche S., He X.T.. Characteristics of X/γ-ray radiations by intense laser interactions with high-Z solids: The role of bremsstrahlung and radiation reactions[J]. Matter and Radiation at Extremes, 2018, 3(6). doi: 10.1016/j.mre.2018.06.002

Characteristics of X/γ-ray radiations by intense laser interactions with high-Z solids: The role of bremsstrahlung and radiation reactions

doi: 10.1016/j.mre.2018.06.002
More Information
  • Corresponding author: * Corresponding author. State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, 201800 Shanghai, China. E-mail address: wudong@siom.ac.cn (D. Wu).
  • Received Date: 2018-03-27
  • Accepted Date: 2018-06-25
  • Available Online: 2021-12-07
  • Publish Date: 2018-11-15
  • In this work, characteristics of X/γ-ray radiations by intense laser interactions with high-Z solids are investigated by means of a newly developed particle-in-cell (PIC) simulation code. The PIC code takes advantage of the recently developed ionization and collision dynamics models, which make it possible to model different types of materials based on their intrinsic atomic properties. Within the simulations, both bremsstrahlung and nonlinear Compton scatterings have been included. Different target materials and laser intensities are considered for studying the parameter-dependent features of X/γ-ray radiations. The relative strength and angular distributions of X/γ ray productions from bremsstrahlung and nonlinear Compton scatterings are compared to each other. The threshold under which the nonlinear Compton scatterings become dominant over bremsstrahlung is also outlined.
  • loading
  • [1]
    C. Wang, X.-T. He, P. Zhang, Ab initio simulations of dense helium plasmas, Phys. Rev. Lett. 106 (2011) 145002.10.1103/physrevlett.106.145002
    [2]
    M. Roth, T.E. Cowan, M.H. Key, S.P. Hatchett, C. Brown, et al., Fast ignition by intense laser-accelerated proton beams, Phys. Rev. Lett. 86 (2001) 436.10.1103/physrevlett.86.436
    [3]
    T.Z. Esirkepov, S.V. Bulanov, K. Nishihara, T. Tajima, F. Pegoraro, et al., Proposed double-layer target for the generation of high-quality laser-accelerated ion beams, Phys. Rev. Lett. 89 (2002) 175003.10.1103/physrevlett.89.175003
    [4]
    Boris Yu. Sharkov, Dieter H.H. Hoffmann, Alexander A. Golubev, Yongtao Zhao, High energy density physics with intense ion beams, Matter Radiat. Extr. 1 (2016) 28.10.1016/j.mre.2016.01.002
    [5]
    J. Magill, H. Schwoerer, F. Ewald, J. Galy, R. Schenkel, et al., Laser transmutation of iodine-129, Appl. Phys. B 77 (2003) 387.10.1007/s00340-003-1306-4
    [6]
    E. Irani, H. Omidvar, R. Sadighi-Bonabi, Gamma rays transmutation of Palladium by bremsstrahlung and laser inverse Compton scattering, Energy Convers. Manage. 77 (2014) 558.10.1016/j.enconman.2013.09.029
    [7]
    O.J. Pike, F. Mackenroth, E.G. Hill, S.J. Rose, A photonCphoton collider in a vacuum hohlraum, Nat. Photon. 8 (2014) 434.10.1038/nphoton.2014.95
    [8]
    B.S. Paradkar, M.S. Wei, T. Yabuuchi, R.B. Stephens, M.G. Haines, et al., Numerical modeling of fast electron generation in the presence of preformed plasma in laser-matter interaction at relativistic intensities, Phys. Rev. E 83 (2011) 046401.10.1103/physreve.83.046401
    [9]
    B.S. Paradkar, S.I. Krasheninnikov, F.N. Beg, Mechanism of heating of pre-formed plasma electrons in relativistic laser-matter interaction, Phys. Plasmas 19 (2012) 060703.10.1063/1.4731731
    [10]
    S.I. Krasheninnikov, Stochastic heating of electrons by intense laser radiation in the presence of electrostatic potential well, Phys. Plasmas 21 (2014) 104510.10.1063/1.4898310
    [11]
    D. Wu, S.I. Krasheninnikov, S.X. Luan, W. Yu, Identifying the source of super-high energetic electrons in the presence of pre-plasma in laser-matter interaction at relativistic intensities, Nucl. Fusion 57 (2017) 016007.10.1088/0029-5515/57/1/016007
    [12]
    D. Wu, S.I. Krasheninnikov, S.X. Luan, W. Yu, The controllable super-high energetic electrons by external magnetic fields at relativistic laser-solid interactions in the presence of large scale pre-plasmas, Phys. Plasmas 23 (2016) 123116.10.1063/1.4972539
    [13]
    D. Wu, S.X. Luan, J.W. Wang, W. Yu, J.X. Gong, et al., The controllable electron-heating by external magnetic fields at relativistic laser-solid interactions in the presence of large scale pre-plasmas, Plasma Phys. Control. Fusion 59 (2017) 065004.10.1088/1361-6587/aa69a9
    [14]
    S.M. Weng, Z.M. Sheng, M. Murakami, M. Chen, M. Liu, et al., Optimization of hole-boring radiation pressure acceleration of ion beams for fusion ignition, Matter Radiat. Extr. 3 (2018) 28.10.1016/j.mre.2017.09.002
    [15]
    D. Wu, X.T. He, W. Yu, S. Fritzsche, Monte Carlo approach to calculate ionization dynamics of hot solid-density plasmas within particle-in-cell simulations, Phys. Rev. E 95 (2017) 023208.10.1103/physreve.95.023208
    [16]
    D. Wu, B. Qiao, C. McGuffey, X.T. He, F.N. Beg, Generation of high-energy mono-energetic heavy ion beams by radiation pressure acceleration of ultra-intense laser pulses, Phys. Plasmas 21 (2014) 123118.10.1063/1.4904402
    [17]
    D. Wu, X.T. He, W. Yu, S. Fritzsche, Monte Carlo approach to calculate proton stopping in warm dense matter within particle-in-cell simulations, Phys. Rev. E 95 (2017) 023207.10.1103/physreve.95.023207
    [18]
    K. Nanbu, S. Yonemura, Weighted particles in Coulomb collision simulations based on the theory of a cumulative scattering angle, J. Comput. Phys. 145 (1998) 639.10.1006/jcph.1998.6049
    [19]
    Y. Sentoku, A.J. Kemp, Numerical methods for particle simulations at extreme densities and temperatures: weighted particles, relativistic collisions and reduced currents, J. Comput. Phys. 227 (2008) 6846.10.1016/j.jcp.2008.03.043
    [20]
    P. Leblanc, Y. Sentoku, Scaling of resistive guiding of laser-driven fast-electron currents in solid targets, Phys. Rev. E 89 (2014) 023109.10.1103/physreve.89.023109
    [21]
    Y. Sentoku, E. dHumieres, L. Romagnani, P. Audebert, J. Fuchs, Dynamic control over mega-ampere electron currents in metals using ionization-driven resistive magnetic fields, Phys. Rev. Lett. 107 (2011) 135005.10.1103/physrevlett.107.135005
    [22]
    L.G. Huang, T. Kluge, T.E. Cowan, Dynamics of bulk electron heating and ionization in solid density plasmas driven by ultra-short relativistic laser pulses, Phys. Plasmas 23 (2016) 063112.10.1063/1.4953891
    [23]
    F. Zamponi, A. Lubcke, T. Kampfer, I. Uschmann, E. Forster, et al., Directional bremsstrahlung from a Ti laser-produced X-ray source at relativistic intensities in the 3C12 keV range, Phys. Rev. Lett. 105 (2010) 085001.10.1103/physrevlett.105.269905
    [24]
    Igor V. Sokolov, Natalia M. Naumova, John A. Nees, Gerard A. Mourou, Victor P. Yanovsky, Radiation back-reaction in relativistically strong and QED-strong pulsed laser fields, Phys. Plasmas 16 (2009) 093115.10.1063/1.3236748
    [25]
    D. Wu, B. Qiao, X.T. He, The radiation reaction effects in the ultra-intense and ultra-short laser foil interaction regime, Phys. Plasmas 22 (2015) 093108.10.1063/1.4930111
    [26]
    F. Wan, C. Lv, M. Jia, H. Sang, B.S. Xie, Photon emission by bremsstrahlung and nonlinear Compton scattering in the interaction of ultraintense laser and plasmas, Eur. Phys. J. D 71 (2017) 236.10.1140/epjd/e2017-70805-7
    [27]
    J.D. Jackson, Classical Electrodynamics, Wiley & Sons, New York, 1999.
    [28]
    Zheng Gong, Ronghao Hu, Yinren Shou, Bin Qiao, Chiaer Chen, et al., Radiation reaction induced spiral attractors in ultra-intense colliding laser beams, Matter Radiat. Extr. 1 (2016) 308.10.1016/j.mre.2016.10.005
    [29]
    H. Xu, W.W. Chang, H.B. Zhuo, L.H. Cao, Z.W. Yue, Parallel programming of 2(1/2)-dimensional PIC under distributed-memory parallel environments, Chin. J. Comput. Phys. 19 (2002) 305.
    [30]
    Qing Jia, Hong-bo Cai, Wei-wu Wang, Shao-ping Zhu, Z.M. Sheng, et al., Effects of the background plasma temperature on the current filamentation instability, Phys. Plasmas 20 (2013) 032113.10.1063/1.4796052
    [31]
    S.V. Bulanov, T. Zh. Esirkepov, M. Kando, F. Pegoraro, S. Bulanov, et al., Ion acceleration from thin foil and extended plasma targets by slow electromagnetic wave and related ion-ion beam instability, Phys. Plasmas 19 (2012) 103105.10.1063/1.4757981
    [32]
    D. Wu, C.Y. Zheng, C.T. Zhou, X.Q. Yan, M.Y. Yu, et al., Suppressing longitudinal double-layer oscillations by using elliptically polarized laser pulses in the hole-boring radiation pressure acceleration regime, Phys. Plasmas 20 (2013) 023102.10.1063/1.4791654
    [33]
    D. Wu, C.Y. Zheng, B. Qiao, C.T. Zhou, X.Q. Yan, et al., Suppression of transverse ablative Rayleigh-Taylor-like instability in the hole-boring radiation pressure acceleration by using elliptically polarized laser pulses, Phys. Rev. E 90 (2014) 023101.10.1103/physreve.90.023101
    [34]
    Z.M. Sheng, Y. Sentoku, K. Mima, J. Zhang, W. Yu, et al., Angular distributions of fast electrons, ions, and bremsstrahlung X/γ-rays in intense laser interaction with solid targets, Phys. Rev. Lett. 85 (2000) 5340.10.1103/physrevlett.85.5340
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (85) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return