Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 3 Issue 5
Sep.  2018
Turn off MathJax
Article Contents
Wu Fuyuan, Chu Yanyun, Ramis Rafael, Li Zhenghong, Ma Yanyun, Yang Jianlun, Wang Zhen, Ye Fan, Huang Zhanchang, Qi Jianmin, Zhou Lin, Liang Chuan, Chen Shijia, Ge Zheyi, Yang Xiaohu, Wang Shangwu. Numerical studies on the radiation uniformity of Z-pinch dynamic hohlraum[J]. Matter and Radiation at Extremes, 2018, 3(5). doi: 10.1016/j.mre.2018.06.001
Citation: Wu Fuyuan, Chu Yanyun, Ramis Rafael, Li Zhenghong, Ma Yanyun, Yang Jianlun, Wang Zhen, Ye Fan, Huang Zhanchang, Qi Jianmin, Zhou Lin, Liang Chuan, Chen Shijia, Ge Zheyi, Yang Xiaohu, Wang Shangwu. Numerical studies on the radiation uniformity of Z-pinch dynamic hohlraum[J]. Matter and Radiation at Extremes, 2018, 3(5). doi: 10.1016/j.mre.2018.06.001

Numerical studies on the radiation uniformity of Z-pinch dynamic hohlraum

doi: 10.1016/j.mre.2018.06.001
More Information
  • Corresponding author: *Corresponding author.; **Corresponding author. E-mail addresses: lee_march@sina.com (Z. Li), yanyunma@126.com (Y. Ma).
  • Received Date: 2017-10-11
  • Accepted Date: 2018-06-15
  • Available Online: 2021-12-07
  • Publish Date: 2018-09-15
  • Radiation uniformity is important for Z-pinch dynamic hohlraum driven fusion. In order to understand the radiation uniformity of Z-pinch dynamic hohlraum, the code MULTI-2D with a new developed magnetic field package is employed to investigate the related physical processes on Julong-I facility with drive current about 7–8 MA. Numerical simulations suggest that Z-pinch dynamic hohlraum with radiation temperature more than 100 eV can be created on Julong-I facility. Although some X-rays can escape out of the hohlraum from Z-pinch plasma and electrodes, the radiation field near the foam center is quite uniform after a transition time. For the load parameters used in this paper, the transition time for the thermal wave transports from r = 1 mm to r = 0 mm is about 2.0 ns. Implosion of a testing pellet driven by cylindrical dynamic hohlraum shows that symmetrical implosion is hard to achieve due to the relatively slow propagation speed of thermal wave and the compression of cylindrical shock in the foam. With the help of quasi-spherical implosion, the hohlraum radiation uniformity and corresponding pellet implosion symmetry can be significantly improved thanks to the shape modulation of thermal wave front and shock wave front.
  • loading
  • [1]
    J.D. Lindl, P. Amendt, R.L. Berger, S.G. Glendinning, S.H. Glenzer, et al., The physics basis for ignition using indirect-drive targets on the National Ignition Facility, Phys. Plasmas 11 (2004) 339–491.10.1063/1.1578638
    [2]
    Ke Lan, Jiu Liu, Zhichao Li, Xufei Xie, Wenyi Huo, et al., Progress in octahedral spherical hohlraum study, Matter. Radiat. Extremes 1 (2016) 8–27.10.1016/j.mre.2016.01.003
    [3]
    S. Kawata, T. Karino, A.I. Ogoyski, Review of heavy-ion inertial fusion physics, Matter. Radiat. Extremes 1 (2016) 89–113.10.1016/j.mre.2016.03.003
    [4]
    C. Olson, G. Rochau, S. Slutz, C. Morrow, R. Olson, et al., Development path for Z-pinch IFE, Fusion Sci. Technol. 47 (2005) 1147–1151.10.13182/fst05-a841
    [5]
    R.B. Spielman, C. Deeney, G.A. Chandler, M.R. Douglas, D.L. Fehl, et al., Tungsten wire-array Z-pinch experiments at 200 TW and 2 MJ, Phys. Plasmas 5 (1998) 2105–2111.10.1063/1.872881
    [6]
    C.L. Ruiz, G.W. Cooper, S.A. Slutz, J.E. Bailey, G.A. Chandler, et al., Production of thermonuclear neutrons from deuterium-filled capsule implosions driven by Z-pinch dynamic hohlraums, Phys. Rev. Lett. 93 (2004) 015001.10.1103/physrevlett.93.015001
    [7]
    G.A. Rochau, J.E. Bailey, G.A. Chandler, G. Cooper, G.S. Dunham, et al., High performance capsule implosions driven by the Z-pinch dynamic hohlraum, Plasma Phys. Controlled Fusion 49 (2007) B591.10.1088/0741-3335/49/12b/s55
    [8]
    W.A. Stygar, T.J. Awe, J.E. Bailey, N.L. Bennett, E.W. Breden, et al., Conceptual designs of two petawatt-class pulsed-power accelerators for high-energy-density-physics experiments, Phys. Rev. Spec. Top.--Accel. Beams 18 (2015) 110401.10.1103/PhysRevSTAB.18.110401
    [9]
    R.W. Lemke, J.E. Bailey, G.A. Chandler, T.J. Nash, S.A. Slutz, et al., Amplitude reduction of nonuniformities induced by magnetic Rayleigh–Taylor instabilities in Z-pinch dynamic hohlraums, Phys. Plasmas 12 (2005) 012703.10.1063/1.1819936
    [10]
    S.A. Slutz, K.J. Peterson, R.A. Vesey, R.W. Lemke, J.E. Bailey, et al., Integrated two-dimensional simulations of dynamic hohlraum driven inertial fusion capsule implosions, Phys. Plasmas 13 (2006) 102701.10.1063/1.2354587
    [11]
    Jianjun Deng, Weiping Xie, Shuping Feng, Meng Wang, Hongtao Li, et al., From concept to reality—A review to the primary test stand and its preliminary application in high energy density physics, Matter. Radiat. Extremes 1 (2016) 48–58.10.1016/j.mre.2016.01.004
    [12]
    Delong Xiao, Shunkai Sun, Chuang Xue, Yang Zhang, Ning Ding, Numerical studies on the formation process of Z-pinch dynamic hohlruams and key issues of optimizing dynamic hohlraum radiation, Acta Phys. Sin. 64 (2015) 235203.
    [13]
    Ning Ding, Yang Zhang, Delong Xiao, Jiming Wu, Zihuan Dai, et al., Theoretical and numerical research of wire array Z-pinch and dynamic hohlraum at IAPCM, Matter. Radiat. Extremes 1 (2016) 135–152.10.1016/j.mre.2016.06.001
    [14]
    Xianbin Huang, Xiaodong Ren, Jiakun Dan, Kunlun Wang, Qiang Xu, et al., Radiation characteristics and implosion dynamics of Z-pinch dynamic hohlraums performed on PTS facility, Phys. Plasmas 24 (2017) 092704.10.1063/1.4998619
    [15]
    Shijian Meng, Qingyuan Hu, Jiaming Ning, Fan Ye, Zhanchang Huang, et al., Measurement of axial radiation properties in Z-pinch dynamic hohlraum at Julong-1, Phys. Plasmas 24 (2017) 014505.10.1063/1.4974771
    [16]
    Fuyuan Wu, Rafael Ramis, Zhenghong Li, Yanyun Chu, Jianlun Yang, Numerical simulation of the interaction between Z-pinch plasma and foam converter using code MULTI, Fusion Sci. Technol. (2017) 10.1080/15361055.2017.1347458.
    [17]
    R. Ramis, J. Meyer-ter-Vehn, J. Ramírez, MULTI2D—a computer code for two-dimensional radiation hydrodynamics, Comput. Phys. Commun. 180 (2009) 977–994.10.1016/j.cpc.2008.12.033
    [18]
    Fuyuan Wu, Rafael Ramis, Zhenghong Li, A conservative MHD scheme on unstructured Lagrangian grids for Z-pinch hydrodynamic simulations, J. Comput. Phys. (2017) 10.1016/j.jcp.2017.12.014.
    [19]
    S.A. Slutz, M.R. Douglas, J.S. Lash, R.A. Vesey, G.A. Chandler, et al., Scaling and optimization of the radiation temperature in dynamic hohlraums, Phys. Plasmas 8 (2001) 1673–1691.10.1063/1.1360213
    [20]
    T.J. Nash, D.H. McDaniel, R.J. Leeper, C.D. Deeney, T.W.L. Sanford, Design, simulation, and application of quasi-spherical 100 ns Z-pinch implosions driven by tens of mega-amperes, Phys. Plasmas 12 (2005) 052705.10.1063/1.1890945
    [21]
    V.P. Smirnov, S.V. Zakharov, E.V. Grabovski, Increase in radiation intensity in a quasi-spherical double liner/dynamic hohlraum system, JETP Lett. 81 (2005) 442–447.10.1134/1.1984026
    [22]
    E.V. Grabovskii, A.N. Gritsuk, V.P. Smirnov, V.V. Aleksandrov, G.M. Oleinik, et al., Current implosion of quasi-spherical wire arrays, JETP Lett. 89 (2009) 315–318.10.1134/s0021364009070017
    [23]
    Yanyun Chu, Zhenghong Li, Jianlun Yang, Ning Ding, Rongkun Xu, et al., Simulation of the quasi-spherical wire-array implosion dynamics based on a multi-element model, Plasma Phys. Controlled Fusion 54 (2012) 105020.10.1088/0741-3335/54/10/105020
    [24]
    Yang Zhang, Ning Ding, Zhenghong Li, Rongkun Xu, Dingyang Chen, et al., Realization of quasi-spherical implosion using pre-shaped prolate wire arrays with a compression foam target inside, Phys. Plasmas 22 (2015) 020703.10.1063/1.4905229
    [25]
    R. Ramis, J. Meyer-ter-Vehn, MULTI-IFE—A one-dimensional computer code for Inertial Fusion Energy (IFE) target simulations, Comput. Phys. Commun. 203 (2016) 226–237.10.1016/j.cpc.2016.02.014
    [26]
    Fuyuan Wu, Yanyun Chu, Fan Ye, Zhenghong Li, Jianlun Yang, One-dimensional numerical investigation on the formation of Z-pinch dynamic hohlraum using the code MULTI, Acta Phys. Sin. 66 (2017) 215201.
    [27]
    T.W.L. Sanford, G.O. Allshouse, B.M. Marder, T.J. Nash, R.C. Mock, et al., Improved symmetry greatly increases X-ray power from wire-array Z-pinches, Phys. Rev. Lett. 77 (1996) 5063.10.1103/physrevlett.77.5063
    [28]
    S.V. Lebedev, F.N. Beg, S.N. Bland, J.P. Chittenden, A.E. Dangor, et al., Snowplow-like behavior in the implosion phase of wire array Z pinches, Phys. Plasmas 9 (2002) 2293.10.1063/1.1466466
    [29]
    A.A. Esaulov, V.L. Kantsyrev, A.S. Safronova, A.L. Velikovich, I.K. Shrestha, et al., Wire ablation dynamics model and its application to imploding wire arrays of different geometries, Phys. Rev. E 86 (2012) 046404.10.1103/physreve.86.046404
    [30]
    K. Lan, Y. Zhang, Theoretical studies of aluminum wire array Z-pinch implosions with varying masses and radii, Eur. Phys. J. Appl. Phys. 19 (2002) 103.10.1051/epjap:2002055
    [31]
    J.E. Bailey, G.A. Chandler, S.A. Slutz, G.R. Bennett, G. Cooper, et al., X-ray imaging measurements of capsule implosions driven by a Z-pinch dynamic hohlraum, Phys. Rev. Lett. 89 (2002) 095004.10.1103/physrevlett.89.095004
    [32]
    Delong Xiao, Shunkai Sun, Yingkui Zhao, Ning Ding, Jiming Wu, et al., Numerical investigation on target implosions driven by radiation ablation and shock compression in dynamic hohlraums, Phys. Plasmas 22 (2015) 052709.10.1063/1.4921332
    [33]
    T.J. Nash, M.S. Derzon, G.A. Chandler, R. Leeper, D. Fehl, et al., High-temperature dynamic hohlraums on the pulsed power driver Z, Phys. Plasmas 6 (1999) 2023–2029.10.1063/1.873457
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views (94) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return