Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 3 Issue 4
Jul.  2018
Turn off MathJax
Article Contents
Razorenov S.V.. Influence of structural factors on the strength properties of aluminum alloys under shock wave loading[J]. Matter and Radiation at Extremes, 2018, 3(4). doi: 10.1016/j.mre.2018.03.004
Citation: Razorenov S.V.. Influence of structural factors on the strength properties of aluminum alloys under shock wave loading[J]. Matter and Radiation at Extremes, 2018, 3(4). doi: 10.1016/j.mre.2018.03.004

Influence of structural factors on the strength properties of aluminum alloys under shock wave loading

doi: 10.1016/j.mre.2018.03.004
  • Received Date: 2017-11-22
  • Accepted Date: 2018-03-19
  • Publish Date: 2018-07-15
  • The results of measurements of the strength characteristics - Hugoniot elastic limit and spall strength of aluminum and aluminum alloys in different structural states under shock wave loading are presented. Single-crystals and polycrystalline technical grade aluminum А1013 and aluminum alloys А2024, АА6063Т6, А1421, A7, А7075, А3003, A5083, АА1070 in the initial coarse-grained state and ultrafine-grained or nanocrystalline structural state were investigated. The refinement of the grain structure was carried out by different methods of severe plastic deformation such as Equal Chanel Angular Pressing, Dynamic Channel Angular Pressing, High-Pressure Torsion and Accumulative Roll-Bonding. The strength characteristics of shock-loaded samples in different structural states were obtained from the analysis of the evolution of the free surface velocity histories recorded by means of laser Doppler velocimeter VISAR. The strain rates before spall fracture of the samples were in the range of 104-105 s−1, the maximum pressure of shock compression did not exceed 7 GPa. The results of these studies clearly demonstrate the influence of structural factors on the resistance to high-rate deformation and dynamic fracture, and it is much less than under the static and quasi-static loading.
  • loading
  • [1]
    T. Antoun, L. Seaman, D.R. Curran, G.I. Kanel, S.V. Razorenov, et al., Spall Fracture, Springer, New York, 2003, 404 pp.
    [2]
    G.I. Kanel, S.V. Razorenov, A.V. Utkin, V.E. Fortov, Shock-wave Phenomena in Condensed Matter, Yanus-K, Moscow, 1996, 407 pp. (In Russian).
    [3]
    Ya.B. Zel'dovich, Yu.P. Raizer, Physics of Shock Waves and High-temperature Hydrodynamic Phenomena, vol. I, Academic Press, New York, 1966.
    [4]
    G.I. Kanel, S.V. Razorenov, V.E. Fortov, Shock-wave Phenomena and the Properties of Condensed Matter, Springer, New York, 2004, 321 pp.
    [5]
    L.M. Barker, R.E. Hollenbach, Laser interferometry for measuring high velocities of any reflecting surface, J. Appl. Phys. 43 (1972) 4669–4675.10.1063/1.1660986
    [6]
    G.V. Garkushin, G.I. Kanel, S.V. Razorenov, Deformation and breaking strength of aluminum AD1 for a shock wave stress at temperatures of 20 and 600°C, Phys. Solid State 52 (11) (2010) 2369–2375.10.1134/s1063783410110247
    [7]
    G.I. Kanel, S.V. Razorenov, K. Baumung, J. Singer, Dynamic yield and tensile strength of aluminum single crystals at temperatures up to the melting point, J. Appl. Phys. 90 (1) (2001) 136–143.10.1063/1.1374478
    [8]
    S.P. Marsh, LASL Shock Hugoniot Data, Berkeley, University of California Press, 1980, 658 pp.
    [9]
    G.I. Kanel, Spall fracture: methodological aspects, mechanisms and governing factors, Int. J. Fract. 163 (1–2) (2010) 173–191.10.1007/s10704-009-9438-0
    [10]
    S.V. Razorenov, G.I. Kanel, The strength of copper single crystals and the factors governing metal fracture in uniaxial dynamic stretching, Phys. Met. Metallogr. 74 (5) (1992) 526–530.
    [11]
    G.I. Kanel, S.V. Razorenov, A.V. Utkin, V.E. Fortov, K. Baumung, et al., Spall strength of molybdenum single crystals, J. Appl. Phys. 74 (12) (1993) 7162–7165.10.1063/1.355032
    [12]
    A.A. Bogach, G.I. Kanel, S.V. Razorenov, A.V. Utkin, S.G. Protasova V.G. Sursaeva, Resistance of zinc crystals to shock deformation and fracture at elevated temperatures, Phys. Solid State 40 (10) (1998) 1676–1680.10.1134/1.1130633
    [13]
    S.V. Razorenov, G.I. Kanel, G.V. Garkushin, O.N. Ignatova, Resistance to dynamic deformation and fracture of tantalum with different grain and defect structures, Phys. Solid State 54 (4) (2012) 790–797.10.1134/s1063783412040233
    [14]
    S.V. Razorenov, A.S. Savinykh, E.B. Zaretsky, Elastic-plastic deformation and fracture of shock-compressed single-crystal and polycrystalline copper near melting, Tech. Phys. 58 (10) (2013) 1437–1442.10.1134/s1063784213100216
    [15]
    G.I. Kanel, G.V. Garkushin, A.S. Savinykh, S.V. Razorenov, T. de Resseguier, et al., Shock response of magnesium single crystals at normal and elevated temperatures, J. Appl. Phys. 116 (2014) 143504.10.1063/1.4897555
    [16]
    G.I. Kanel, E.B. Zaretsky, S.V. Razorenov, S.I. Ashitkov, V.E. Fortov, Unusual plasticity and strength of metals at ultra-short load durations, Phys. Usp. 60 (5) (2017) 490–508.10.3367/ufne.2016.12.038004.
    [17]
    S.I. Ashitkov, P.S. Komarov, A.V. Ovchinnikov, E.V. Struleva, M.B. Agranat, Deformation dynamics and spallation strength of aluminium under a single-pulse action of a femtosecond laser, Quant. Electron. 43 (3) (2013) 242–249.10.1070/qe2013v043n03abeh015104
    [18]
    S.I. Ashitkov, M.B. Agranat, G.I. Kanel, P.S. Komarov, V.E. Fortov, Behavior of aluminum near an ultimate theoretical strength in experiments with femtosecond laser pulses, J. Exp. Theor. Phys. Lett. 92 (2010) 516–520.10.1134/s0021364010200051
    [19]
    G.V. Sin’ko, N.A. Smirnov, Ab initio calculations of the equation of state and elastic constants of aluminum in the region of negative pressures, J. Exp. Theor. Phys. Lett. 75 (3) (2002) 184–186.10.1134/1.1475719.
    [20]
    V.D. Glusman, G.I. Kanel, V.F. Loskutov, V.E. Fortov, I.E. Khorev, Resistance to deformation and fracture of 35Kh3NM steel under conditions of shock loading, Strength Mater. 17 (8) (1985) 1093–1099.10.1007/bf01533790
    [21]
    S.V. Razorenov, A.A. Bogach, G.I. Kanel, The effect of heat treatment and polymorphic transformations on the dynamic strength of steel 40 Kh, Phys. Met. Metallogr. 83 (1) (1997) 100–103.
    [22]
    G.V. Garkushin, S.V. Razorenov, G.I. Kanel, Effect of structural factors on submicrosecond strength of D16T aluminum alloy, Tech. Phys. 53 (11) (2008) 1441–1446.10.1134/s1063784208110078
    [23]
    V.A. Ogorodnikov, E.Yu. Borovkova, S.V. Erunov, Strength of some grades of steel and Armco iron under shock compression and rarefaction at pressures of 2–200 GP, Combust. Explos. Shock Waves 40 (5) (2004) 597–604.10.1023/b:cesw.0000041413.64269.1c
    [24]
    G.T. Gray III, N.K. Bourne, A.M. Zocher, P.J. Maudlin, J.C.F. Millett, Influence of crystallographic anisotropy on the Hopkinson fracture “spallation” of zirconium, in: M.D. Furnish, L.C. Chhabildas, R.S. Hixson (Eds.), Shock Compression of Condensed Matter-1999, AIP Press, Woodbury, NY, 2000, pp. 509–512.
    [25]
    G.T. Gray III, M.F. Lopez, N.K. Bourne, J.C.F. Millett, K.S. Vecchio, Influence of microstructural anisotropy on the spallation of 1080 eutectoid steel, In: M.D. Furnish, N.N. Thadhani, Y. Horie (Eds.), Shock Compression of Condensed Matter-2001, AIP Press, Melville, NY, 2002, pp. 479–482.
    [26]
    K. Baumung, G.I. Kanel, S.V. Razorenov, D. Rusch, J. Singer, et al., Investigations of the dynamic strength variations in metals, J. Phys. 7 (1997) C3–C927 IV France.
    [27]
    M.D. Furnish, W.D. Reinhart, W.M. Trott, L.C. Chhabildas, T.J. Vogler, Variability in dynamic properties of tantalum: spall, Hugoniot elastic limit and attenuation, in: M.D. Furnish, et al. (Ed.), Shock Compression of Condensed Matter – 2005, AIP Conference Proceedings,vol. 845, 2006, pp. 615–618. New York.10.1063/1.2263397
    [28]
    M.A. Meyers, D.J. Benson, O. Vohringer, B.K. Kad, Q. Xue, et al., Constitutive description of dynamic deformation: physically-based mechanisms, Mater. Sci. Eng.: A 322 (2002) 194–216.10.1016/s0921-5093(01)01131-5
    [29]
    E.O. Hall, The deformation and ageing of mild steel: III discussion of results, Proc. Phys. Soc. B 64 (1951) 747–753.10.1088/0370-1301/64/9/303
    [30]
    N.J. Petch, The cleavage strength of polycrystals, J. Iron Steel 174 (1953) 25–28.
    [31]
    R.Z. Valiev, N.A. Enikeev, M. Yu. Murashkin, S.E. Aleksandrov, R.V. Goldshtein, Superstrength of ultrafine grained aluminum alloys produced by severe plastic deformation, Dokl. Phys. 55 (6) (2010) 267–270.10.1134/s1028335810060054
    [32]
    T.G Langdon, Ultrafine-grained materials: a personal perspective, Int. J. Mater. Res. 98 (4) (2007) 251–254.10.3139/146.101473
    [33]
    Y. Estrin, A. Vinogradov, Extreme grain refinement by severe plastic deformation: a wealth of challenging science, Acta Mater. 61 (2013) 782–817.10.1016/j.actamat.2012.10.038
    [34]
    R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Bulk nanostructured materials from severe plastic deformation, Prog. Mater. Sci. 45 (2000) 103–189.10.1016/s0079-6425(99)00007-9
    [35]
    G.A. Malygin, Strength and plasticity of nanocrystalline materials and nanosized crystals, Physics Usp 54 (2011) 1091–1116.10.3367/ufne.0181.201111a.1129
    [36]
    M.A. Meyers, A. Mishra, D.J. Benson, Mechanical properties of nanocrystalline materials, Prog. Mater. Sci. 51 (2006) 427–556.10.1016/j.pmatsci.2005.08.003
    [37]
    M. Hockauf, L.W. Meyer, T. Hprin, M. Hietschold, S. Schultze, et al., Mechanical properties and microstructural changes of ultrafine-grained AA6063T6 during high-cycle fatigue, Int. J. Mater. Res. 97 (10) (2006) 1392–1400.10.3139/146.101383
    [38]
    L.W. Meyer, M. Hockauf, L. Krüger, I. Schneider, Compressive behavior of ultrafine-grained AA6063T6 over a wide range of strains and strain rates, Int. J. Mater. Res. 98 (3) (2007) 191–199.10.3139/146.101462
    [39]
    J.M. Winey, B.M. LaLone, P.B. Trivedi, Y.M. Gupta, Elastic wave amplitudes in shock-compressed thin polycrystalline aluminum samples, J. Appl. Phys. 106 (2009) 073508.10.1063/1.3236654
    [40]
    T.E. Arvidsson, Y.M. Gupta, G.E. Duvall, Precursor decay in 1060 aluminum, J. Appl. Phys. 46 (1975) 4474–4481.10.1063/1.321423
    [41]
    G.I. Kanel, S.V. Razorenov, A.A. Bogatch, A.V. Utkin, V.E. Fortov, et al., Spall fracture properties of aluminum and magnesium at high temperatures, J. Appl. Phys. 79 (11) (1996) 8310–8317.10.1063/1.362542
    [42]
    S.V. Razorenov, G.I. Kanel, V.E. Fortov, Submicrosecond strength of aluminum and an aluminum-magnesium alloy AMg6M at normal and enhanced temperatures, Phys. Met. Metallogr. 95 (1) (2003) 86–91.
    [43]
    K. Baumung, H. Bluhm, G.I. Kanel, G. Müller, S.V. Razorenov, et al., Tensile strength of five metals and alloys in the nanosecond load duration range at normal and elevated temperatures, Int. J. Imp. Eng. 25 (7) (2001) 631–639.10.1016/s0734-743x(01)00004-5
    [44]
    G.I. Kanel, S.V. Razorenov, Anomalies in the temperature dependences of the bulk and shear strength of aluminum single crystals in the submicrosecond range, Phys. Solid State 43 (5) (2001) 871–877.10.1134/1.1371368
    [45]
    E.V. Shorokhov, I. N. Zhgilev, R.Z. Valiev, Method of dynamic treatment of materials. RF Patent 2283717. Byull. Izobret., 26 (2006).
    [46]
    I.V. Khomshaya, E.V. Shorokhov, V.I. Zel’dovich, A.E. Kheifets, N.Yu. Frolova, et al., Study of the structure and mechanical properties of submicrocrystalline and nanocrystalline copper produced by high-rate pressing, Phys. Met. Metallogr. 111 (6) (2011) 612–622.10.1134/s0031918x11050097
    [47]
    V.I. Zel’dovich, E.V. Shorokhov, N.Yu. Frolova, et al., High-rate deformation of titanium subjected to dynamic channel-angular pressing, Phys. Met. Metallogr. 105 (4) (2008) 402–408.
    [48]
    V.I. Zel’dovich, I.V. Khomskaya, N.Yu Frolova, A.E. Kheifets, E.V. Shorokhov, et al., Structure of chromium-zirconium bronze subjected to dynamic channel-angular pressing and aging, Phys. Met. Metallogr. 114 (5) (2013) 411–418.
    [49]
    I.G. Brodova, A.N. Petrova, I.G. Shirinkina, E.V. Shorokhov, I.V. Minaev, et al., Fragmentation of the structure in Al-based alloys upon high speed effect, Rev. Adv. Mater. Sci. 25 (2) (2010) 128–135.
    [50]
    A.N. Petrova, I.G. Brodova, O.A. Plekhov, O.B. Naimark, E.V. Shorokhov, Mechanical properties and energy dissipation in ultrafine-grained AMts and V95 aluminum alloys during dynamic compression, Tech. Phys. 59 (7) (2014) 989–996.10.1134/s1063784214070226
    [51]
    M.V. Aniskin, O.N. Ignatova, I.I. Kaganova, A.V. Kalmanov, E.V. Koshatova, et al., Mechanical properties of tantalum with different types of microstructure under high-rate deformation, Phys. Mesomech. 14 (1) (2011) 79–84.10.1016/j.physme.2011.04.010
    [52]
    S.V. Razorenov, A.S. Savinykh, E.B. Zaretsky, G.I. Kanel, Yu.R. Kolobov, Effect of preliminary strain hardening on the flow stress of titanium and a titanium alloy during shock compression, Phys. Solid State 47 (4) (2005) 663–669.10.1134/1.1913977
    [53]
    G.V. Garkushin, G.E. Ivanchikhina, S.V. Razorenov, O.N. Ignatova, A.N. Malyshev, et al., Mechanical properties of grade M1 copper before and after shock compression in a wide range of loading duration, Phys. Met. Metallogr. 111 (2) (2011) 197–206.10.1134/s0031918x11010170
    [54]
    P.W. Bridgman, On torsion combined with compression, J. Appl. Phys. 14 (1943) 273–283.10.1063/1.1714987
    [55]
    P.W. Bridgman, The effect of hydrostatic pressure on plastic flow under shearing stress, J. Appl. Phys. 17 (1946) 692–697.10.1063/1.1707772
    [56]
    P.W. Bridgman, Studies in Large Scale Plastic Flow and Fracture, McGraw-Hill, New York, NY, 324 pp.
    [57]
    Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, R.G. Hong, Ultra-fine grained bulk aluminum produced by accumulative roll-bonding (ARB) process, Scripta Mater. 39 (9) (1998) 1221–1227.10.1016/s1359-6462(98)00302-9
    [58]
    Y. Saito, H. Utsunomiya, N. Tsuji, T. Sakai, Novel ultra-high straining process for bulk materials—development of the accumulative roll-bonding (ARB) process, Acta Mater. 47 (2) (1999) 579–583.10.1016/s1359-6454(98)00365-6
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(3)

    Article Metrics

    Article views (142) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return