Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 3 Issue 3
May  2018
Turn off MathJax
Article Contents
Nikl J., Holec M., Zeman M., Kuchařík M., Limpouch J., Weber S.. Macroscopic laser–plasma interaction under strong non-local transport conditions for coupled matter and radiation[J]. Matter and Radiation at Extremes, 2018, 3(3). doi: 10.1016/j.mre.2018.03.001
Citation: Nikl J., Holec M., Zeman M., Kuchařík M., Limpouch J., Weber S.. Macroscopic laser–plasma interaction under strong non-local transport conditions for coupled matter and radiation[J]. Matter and Radiation at Extremes, 2018, 3(3). doi: 10.1016/j.mre.2018.03.001

Macroscopic laser–plasma interaction under strong non-local transport conditions for coupled matter and radiation

doi: 10.1016/j.mre.2018.03.001
More Information
  • Corresponding author: *Corresponding author. E-mail addresses: stefan.weber@eli-beams.eu (S. Weber).
  • Received Date: 2017-11-19
  • Accepted Date: 2018-03-08
  • Publish Date: 2018-05-15
  • Reliable simulations of laser–target interaction on the macroscopic scale are burdened by the fact that the energy transport is very often non-local. This means that the mean-free-path of the transported species is larger than the local gradient scale lengths and transport can be no longer considered diffusive. Kinetic simulations are not a feasible option due to tremendous computational demands, limited validity of the collisional operators and inaccurate treatment of thermal radiation. This is the point where hydrodynamic codes with non-local radiation and electron heat transport based on first principles emerge. The simulation code PETE (Plasma Euler and Transport Equations) combines both of them with a laser absorption method based on the Helmholtz equation and a radiation diffusion scheme presented in this article. In the case of modelling ablation processes it can be observed that both, thermal and radiative, transport processes are strongly non-local for laser intensities of 1013W/cm2 and above. In this paper simulations for various laser intensities and different ablator materials are presented, where the non-local and diffusive treatments of radiation transport are compared. Significant discrepancies are observed, supporting importance of non-local transport for inertial confinement fusion related studies as well as for pre-pulse generated plasma in ultra-high intensity laser–target interaction.
  • loading
  • [1]
    M. Kaluza, J. Schreiber, M.I.K. Santala, G.D. Tsakiris, K. Eidmann, et al., Influence of the laser prepulse on proton acceleration in thin-foil experiments, Phys. Rev. Lett. 93 (2004) 045003.10.1103/physrevlett.93.045003
    [2]
    D. Batani, R. Jafer, M. Veltcheva, R. Dezulian, O. Lundh, et al., Effects of laser prepulses on laser-induced proton generation, New J. Phys. 12 (4) (2010) 045018.10.1088/1367-2630/12/4/045018
    [3]
    J. Limpouch, O. Klimo, J. Psikal, J. Proska, F. Novotny, et al., Efficient ion beam generation in laser interactions with micro-structured targets, EPJ Web Conf. 59 (2013) 17011.10.1051/epjconf/20135917011
    [4]
    A.G. MacPhee, L. Divol, A.J. Kemp, K.U. Akli, F.N. Beg, et al., Limitation on prepulse level for cone-guided fast-ignition inertial confinement fusion, Phys. Rev. Lett. 104 (2010) 055002.10.1103/physrevlett.104.055002
    [5]
    S.D. Baton, M. Koenig, J. Fuchs, A. Benuzzi-Mounaix, P. Guillou, et al., Inhibition of fast electron energy deposition due to preplasma filling of cone-attached targets, Phys. Plasma. 15 (4) (2008) 042706.10.1063/1.2903054
    [6]
    O. Klimo, J. Limpouch, N. Zhavoronkov, Numerical and experimental studies of K-α emission from femtosecond-laser-irradiated foil targets, J. Phys. IV France 133 (2006) 1181–1183.10.1051/jp4:2006133241
    [7]
    A. Zhidkov, A. Sasaki, T. Utsumi, I. Fukumoto, T. Tajima, et al., Prepulse effects on the interaction of intense femtosecond laser pulses with high-Z solids, Phys. Rev. E 62 (2000) 7232–7240.10.1103/physreve.62.7232
    [8]
    M. Holec, J. Nikl, M. Vranic, S. Weber, The effect of pre-plasma formation undernonlocal transport conditions for ultrarelativisticlaser-plasma interaction, Plasma Phys. Control. Fusion 60 (2018) 044019.10.1088/1361-6587/aab05a
    [9]
    M. Holec, Numerical Modeling of Nonlocal Energy Transport in Laser-heated Plasmas (Doctoral thesis), Czech Technical University in Prague, 2016, http://hdl.handle.net/10467/68302.
    [10]
    J. Nikl, Some Aspects of Numerical Methods for Laser Plasma Hydrodynamics (Master's thesis), Czech Technical University in Prague, 2017.
    [11]
    M. Holec, J. Limpouch, R. Liska, S. Weber, High-order discontinuous Galerkin nonlocal transport and energy equations scheme for radiation hydrodynamics, Int. J. Numer. Meth. Fluid. 83 (2016) 779–797.10.1002/fld.4288
    [12]
    M. Holec, J. Nikl, S. Weber, Nonlocal transport hydrodynamic model for laser heated plasmas, Phys. Plasmas 25 (2018) 032704.10.1063/1.5011818
    [13]
    V. Silin, Theory of nonlocal transport in laser produced plasmas, Phys. Scr. T 63 (1996) 148.10.1088/0031-8949/1996/t63/022
    [14]
    J. Luciani, P. Mora, J. Virmont, Nonlocal heat transport due to steep temperature gradients, Phys. Rev. Lett. 51 (1983) 1664.10.1103/physrevlett.51.1664
    [15]
    E. Epperlein, Kinetic theory of laser filamentation in plasmas, Phys. Rev. Lett. 65 (1990) 2145.10.1103/physrevlett.65.2145
    [16]
    E. Epperlein, R. Short, Nonlocal heat transport effects on the filamentation of light in plasmas, Phys. Fluids B 4 (1992) 2211.10.1063/1.860025
    [17]
    M. Prasad, D. Kershaw, Nonviability of some nonlocal electron heat transport modeling, Phys. Fluids B 1 (1989) 2430.10.1063/1.859178
    [18]
    M. Prasad, D. Kershaw, Stable solutions of nonlocal electron heat transport equations, Phys. Fluids B 3 (1991) 3087.10.1063/1.859995
    [19]
    G.P. Schurtz, P.D. Nicolaï, M. Busquet, A nonlocal electron conduction model for multidimensional radiation hydrodynamics codes, Phys. Plasma. 7 (10) (2000) 4238.10.1063/1.1289512
    [20]
    V.N. Goncharov, O.V. Gotchev, E. Vianello, T.R. Boehly, J.P. Knauer, et al., Early stage of implosion in inertial confinement fusion: shock timing and perturbation evolution, Phys. Plasma. 13 (1) (2006) 1–28.10.1063/1.2162803
    [21]
    S. Chapman, T.G. Cowling, Mathematical Theory of Nonuniform Gases, Cambridge University Press, Cambridge, 1952.
    [22]
    M. Gittings, R. Weaver, M. Clover, T. Betlach, N. Byrne, et al., The RAGE radiation-hydrodynamic code, Comput. Sci. Discov. 1 (2008) 015005.10.1088/1749-4699/1/1/015005
    [23]
    N.J. Turner, J. M. Stone, A module for radiation hydrodynamic calculations with ZEUS-2D using flux-limited diffusion, Astrophys. J. Suppl. 135 (1) (2001) 30.10.1086/321779
    [24]
    C. Levermore, Relating Eddington factors to flux limiters, J. Quant. Spectrosc. Radiat. Transf. 31 (2) (1984) 149–160.10.1016/0022-4073(84)90112-2
    [25]
    G.L. Olson, L.H. Auer, M.L. Hall, Diffusion, P1, and other approximate forms of radiation transport, J. Quant. Spectrosc. Radiat. Transf. 64 (6) (2000) 619–634.10.1016/s0022-4073(99)00150-8
    [26]
    B.E. Freeman, L.E. Hauser, J.T. Palmer, S. Pickard, G.M. Simmons, et al., Tech. Rep. 2135, DASA. The VERA Code: A One Dimensional Radiation Hydrodynamics Code, vol. I. ,Systems, Science, and Software, Inc, 1968, La Jolla.
    [27]
    D.S. Kershaw, Flux Limiting Nature's Own Way, Tech. Rep. UCRL-78378. Lawrence Livermore National Laboratory, 1976.
    [28]
    B.G. Carlson, Solution of the Transport Equation by Sn Approximations. Tech. Rep. LA-1599. Los Alamos Scientific Laboratory, 1953.
    [29]
    G.C. Pomraning, The Equations of Radiation Hydrodynamics, Pergamon Press, Oxford, 1973.
    [30]
    M. Klassen, R. Kuiper, R.E. Pudritz, T. Peters, R. Banerjee, et al., A general hybrid radiation transport scheme for star formation simulations on an adaptive grid, Astrophys. J. 797 (1) (2014) 4.10.1088/0004-637x/797/1/4
    [31]
    E. Caramana, D. Burton, M. Shashkov, P. Whalen, The construction of compatible hydrodynamics algorithms utilizing conservation of total energy, J. Comput. Phys. 146 (1) (1998) 227–262.10.1006/jcph.1998.6029
    [32]
    P.L. Bhatnagar, E.P. Gross, M. Krook, A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems, Phys. Rev. 94 (3) (1954) 511–525.10.1103/physrev.94.511
    [33]
    W. Manheimer, D. Colombant, V. Goncharov, The development of a Krook model for nonlocal transport in laser produced plasmas. I. Basic theory, Phys. Plasma. 15 (8) (2008) 1–10.10.1063/1.2963078
    [34]
    Y.V. Afanasev, N.N. Demchenko, O.N. Krokhin, V.B. Rosanov, Absorption and reflection of laser radiation by a dispersing high-temperature plasma, Sov. Phys. JETP 45 (1977) 90.
    [35]
    J. Velechovský, Modelování absorpce laserového záření v plazmatu, Bachelor Project, Czech Technical University in Prague, 2009.
    [36]
    T. Kapin, M. Kuchařík, J. Limpouch, R. Liska, Hydrodynamic simulations of laser interactions with low-density foams, Czech. J. Phys. 56 (2006) B493–B499.10.1007/s10582-006-0243-y
    [37]
    M. Born, E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. Cambridge University Press, 1999.
    [38]
    C.E. Shannon, Communication in the presence of noise, In Proc. IRE 37(1), 1949, pp. 10–21.10.1109/jrproc.1949.232969
    [39]
    T.J. Barth, Numerical methods for gasdynamic systems on unstructured meshes, in: D. Kröner, M. Ohlberger, C. Rohde (Eds.), An Introduction to Recent Developments in Theory and Numerics for Conservation Laws: Proceedings of the International School on Theory and Numerics for Conservation Laws, vol. 1999, Springer, Berlin, Freiburg/Littenweiler, October 20–24, 1997, pp. 195–285.
    [40]
    K. Eidmann, J. Meyer-ter-Vehn, T. Schlegel, S. Hüller, Hydrodynamic simulation of subpicosecond laser interaction with solid-density matter, Phys. Rev. E 62 (2000) 1202.10.1103/physreve.62.1202
    [41]
    S.P. Regan, R. Epstein, V.N. Goncharov, I.V. Igumenshchev, D. Li, et al., Laser absorption, mass ablation rate, and shock heating in direct-drive inertial confinement fusion, Phys. Plasma. 14 (5) (2007) 056305.10.1063/1.2671690
    [42]
    L. Spitzer Jr., R. Härm, Transport phenomena in a completely ionized gas, Phys. Rev. 89 (1953) 977.10.1103/physrev.89.977
    [43]
    Y. Lee, R. More, An electron conductivity model for dense plasmas, Phys. Fluids 27 (1984) 1273.10.1063/1.864744
    [44]
    N. Ashcroft, N. Mermin, Solid State Physics, Saunders College Publisher, USA, (1976).
    [45]
    H. Milchberg, R. Freeman, S. Davey, Reflectivity of a simple metal from room temperature to 106 K, Phys. Rev. Lett. 61 (1988) 2364.10.1103/physrevlett.61.2364
    [46]
    P.B. Johnson, R.W. Christy, Optical constants of the noble metals, Phys. Rev. B 6 (12) (1972) 4370.10.1103/physrevb.6.4370
    [47]
    G. Tsakiris, K. Eidmann, An approximate method for calculating Planck and Rosseland mean opacities in hot, dense plasmas, J. Quant. Spectrosc. Radiat. Transf. 38 (5) (1987) 353–368.10.1016/0022-4073(87)90030-6
    [48]
    N. Vaytet, M. González, E. Audit, G. Chabrier, The influence of frequency-dependent radiative transfer on the structures of radiative shocks, J. Quant. Spectrosc. Radiat. Transf. 125 (2013) 105–122.10.1016/j.jqsrt.2013.03.003
    [49]
    D. Mihalas, B. Mihalas, Foundations of Radiation Hydrodynamics, Oxford University Press, New York, 1985.
    [50]
    J.J. Honrubia, J.M. Aragonés, Finite element method for charged-particle calculations, Nucl. Sci. Eng. 93 (4) (1986) 386–402.10.13182/nse86-a18474
    [51]
    Y. Zeldovich, Y. Raizer, Physics of Shock Waves and High-temperature Hydrodynamic Phenomena, Dover Publications, New York, 2002.
    [52]
    C.D. Levermore, G.C. Pomraning, A flux-limited diffusion theory. Astrophys. J. 248 (1981) 321.10.1086/159157
    [53]
    G.N. Minerbo, Maximum entropy Eddington factors. J. Quant. Spectrosc. Radiat. Transf. 20 (1978) 541.10.1016/0022-4073(78)90024-9
    [54]
    M. Shashkov, S. Steinberg, Solving diffusion equations with rough coefficients in rough grids, J. Comput. Phys. 129 (2) (1996) 383–405.10.1006/jcph.1996.0257
    [55]
    E. Livne, A. Glasner, A finite difference scheme for the heat conduction equation, J. Comput. Phys. 66 (1) (1985) 59–66.10.1016/0021-9991(85)90156-1
    [56]
    D.A. Knoll, W.J. Rider, G.L. Olson, An efficient nonlinear solution method for non-equilibrium radiation diffusion, J. Quant. Spectrosc. Radiat. Transf. 63 (1) (1999) 15–29.10.1016/s0022-4073(98)00132-0
    [57]
    D.A. Knoll, W.J. Rider, G.L. Olson, Nonlinear convergence, accuracy, and time step control in nonequilibrium radiation diffusion, J. Quant. Spectrosc. Radiat. Transf. 70 (1) (2001) 25–36.10.1016/s0022-4073(00)00112-6
    [58]
    E. Epperlein, R. Short, A practical nonlocal model for electron heat transport in laser plasmas, Phys. Fluids B 3 (1991) 3092.10.1063/1.859789
    [59]
    T. Group, SESAME: Report on the Los Alamos Equation-of-state Library Tech. Rep. LALP-83-4, Los Alamos National Laboratory, Los Alamos, 1983.
    [60]
    S. Lyon, J. Johnson, SESAME: The Los Alamos National Laboratory Equation of State Database. Tech. Rep. LA-UR-92-3407, Los Alamos National Laboratory, Los Alamos, 1992.
    [61]
    J.D. Huba, Tech. Rep. NRL: Plasma Formulary, vol. 20375, Naval Research Laboratory, Washington, DC, 2013.
    [62]
    W.S.M. Werner, Electron transport in solids for quantitative surface analysis, Surf. Interface Anal. 31 (3) (2001) 141–176.10.1002/sia.973
    [63]
    Extreme Light Infrastructure. URL http://www.eli-laser.eu.
    [64]
    Extreme Light Infrastructure Beamlines. URL http://www.eli-beams.eu.
    [65]
    S. Weber, S. Bechet, S. Borneis, L. Brabec, M. Bučka, et al., P3: an installation for high-energy density plasma physics and ultra-high intensity laser-matter interaction at ELI-Beamlines, Matter Radiat. Extremes 2 (2017) 149.10.1016/j.mre.2017.03.003
    [66]
    B. Rus, P. Bakule, D. Kramer, J. Naylon, J. Thoma, et al., ELI-beamlines: development of next generation short-pulse laser systems, Proc. SPIE 9515 (2015) 9515OF.
    [67]
    J. Sanz, R. Betti, V. Smalyuk, M. Olazabal-Loumé, V. Drean, et al., Radiation hydrodynamic theory of double ablation fronts in direct-drive inertial confinement fusion, Phys. Plasma. 16 (2009) 082704.10.1063/1.3202697
    [68]
    P. Mora, Theoretical model of absorption of laser light by a plasma, Phys. Fluids 25 (6) (1982) 1051.10.1063/1.863837
    [69]
    A. Caruso, R. Gratton, Some properties of the plasmas produced by irradiating light solids by laser pulses, Plasma Phys. 10 (9) (1968) 867–877.10.1088/0032-1028/10/9/307
    [70]
    R. Sigel, K. Eidmann, F. Lavarenne, R. Schmalz, Conversion of laser light into soft X rays. Part 1: dimensional analysis, Phys. Fluids B 2 (1990) 199.10.1063/1.859528
    [71]
    A. Brantov, V. Bychenkov, Nonlocal transport in hot plasmas. Part I, Plasma Phys. Rep. 39 (2013) 698.10.1134/s1063780x13090018
    [72]
    D.G. Colombant, W.M. Manheimer, M. Busquet, Test of models for electron transport in laser produced plasmas, Phys. Plasma. 12 (7) (2005) 072702.10.1063/1.1929777
    [73]
    R. Fabbro, C. Max, E. Fabre, Planar laser-driven ablation: effect of inhibited electron thermal conduction, Phys. Fluids 28 (5) (1985) 1463.10.1063/1.864982
    [74]
    V. Drean, M. Olazabal-Loumé, J. Sanz, V. Tikhonchuk, Dynamics and stability of radiation-driven double ablation front structures, Phys. Plasma. 17 (2010) 122701.10.1063/1.3509108
    [75]
    D. Batani, L. Antonelli, G. Folpini, Y. Maheut, L. Giuffrida, et al., Generation of high pressure shocks relevant to the shock-ignition intensity regime, Phys. Plasma. 21 (2014) 032710.10.1063/1.4869715
    [76]
    K. Falk, M. Holec, C.J. Fontes, C.L. Fryer, C.W. Greeff, et al., Measurement of preheat due to nonlocal electron transport in warm dense matter, Phys. Rev. Lett. 120 (2018) 025002.10.1103/physrevlett.120.025002
    [77]
    T. Esirkepov, J. Koga, A. Sunahara, T. Morita, M. Nishikino, et al., Prepulse and amplified spontaneous emission effects on the interaction of a petawatt class laser with thin solid targets, Nucl. Instrum. Meth. A 745 (2014) 150.10.1016/j.nima.2014.01.056
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (109) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return