Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 3 Issue 4
Jul.  2018
Turn off MathJax
Article Contents
An Guang-Peng, Chi Yun-Long, Dang Yong-Le, Fu Guang-Yong, Guo Bing, Huang Yong-Sheng, He Chuang-Ye, Kong Xiang-Cheng, Lan Xiao-Fei, Li Jia-Cai, Liu Fu-Long, Shi Jin-Shui, Sun Xian-Jing, Wang Yi, Wang Jian-Li, Wang Lin, Wei Yuan-Yuan, Wu Gang, Xu Guang-Lei, Xi Xiao-Feng, Yang Guo-Jun, Zhang Chun-Lei, Zhang Zhuo, Zheng Zhi-Peng, Zhang Xiao-Ding, Zhang Shao-Ping. High energy and high brightness laser compton backscattering gamma-ray source at IHEP[J]. Matter and Radiation at Extremes, 2018, 3(4). doi: 10.1016/j.mre.2018.01.005
Citation: An Guang-Peng, Chi Yun-Long, Dang Yong-Le, Fu Guang-Yong, Guo Bing, Huang Yong-Sheng, He Chuang-Ye, Kong Xiang-Cheng, Lan Xiao-Fei, Li Jia-Cai, Liu Fu-Long, Shi Jin-Shui, Sun Xian-Jing, Wang Yi, Wang Jian-Li, Wang Lin, Wei Yuan-Yuan, Wu Gang, Xu Guang-Lei, Xi Xiao-Feng, Yang Guo-Jun, Zhang Chun-Lei, Zhang Zhuo, Zheng Zhi-Peng, Zhang Xiao-Ding, Zhang Shao-Ping. High energy and high brightness laser compton backscattering gamma-ray source at IHEP[J]. Matter and Radiation at Extremes, 2018, 3(4). doi: 10.1016/j.mre.2018.01.005

High energy and high brightness laser compton backscattering gamma-ray source at IHEP

doi: 10.1016/j.mre.2018.01.005
More Information
  • Corresponding author: *Corresponding author. Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.; **Corresponding author. Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China. E-mail addresses: huangys82@ihep.ac.cn (Y.-S. Huang), lijc@ihep.ac.cn (J.-C. Li).
  • Received Date: 2017-11-17
  • Accepted Date: 2018-01-28
  • Publish Date: 2018-07-15
  • Based on the LINAC of BEPCII, a high-polarized, high bightness, energy-tunable, monoenergetic laser compton backscattering (LCS) gamma-ray source is under construction at IHEP. The gamma-ray energy range is from 1 MeV to 111 MeV. It is a powerful and hopeful research platform to reveal the underlying physics of the nuclear, the basic particles and the vacuum or to check the exist basic physical models, quantum electrodynamic (QED) theories. In the platform, a 1.064 μm Nd:YAG laser system and a 10.6 μm CO2 laser system are employed. All the trigger signals to the laser system and the electron control system are from the only reference clock at the very beginning of the LINAC to make sure the temporal synchronization. Two optical transition radiation (OTR) targets and two charged-couple devices (CCD) are used to monitor and to align the electron beam and the laser beam. With the LCS gamma-ray source, it is proposed to experimentally check the gamma-ray calibrations, the photon-nuclear physics, nuclear astrophysics and some basic QED phenomena.
  • loading
  • [1]
    Hayakawa, T., Shizuma, T., Miyamoto, S., Amano, S., Takemoto, A., et al., Spatial anisotropy of neutrons emitted from the 56Fe (γ, n)55 reaction with a linearly polarized γ-ray beam, Phys. Rev. C 93 (4) (2016) 044313.10.1103/PhysRevC.93.044313
    [2]
    Pan, Q., Wang, X., Chen, J., Guo, W., Fan, G., et al., Shanghai laser electron γ source(slegs), Nucl. Phys. Rev. 25 (2008) 129–134.10.11804/NuclPhysRev.25.02.129
    [3]
    Nedorezov, V.G., Experiments with compton back scattered γ beams on graal collaboration results, Phys. Part. Nucl. 43 (3) (2012) 326–347.10.1134/S1063779612030057
    [4]
    S. Gales, D. L. Balabanski, F. Negoita, O. Tesileanu, C.A. Ur, et al., New frontiers in nuclear physics with high-power lasers and brilliant monochromatic gamma beams, Phys. Scr. 91 (9) 093004.10.1088/0031-8949/91/9/093004
    [5]
    Arnould, M., Goriely, S., The p-process of stellar nucleosynthesis: astrophysics and nuclear physics status, Phys. Rep. 384 (1) (2003) 1–84.10.1016/s0370-1573(03)00242-4
    [6]
    Koga, J.K., Hayakawa, T., Possible precise measurement of delbrück scattering using polarized photon beams, Phys. Rev. Lett. 118 (20) (2017) 204801.10.1103/PhysRevLett.118.204801
    [7]
    Leemans, W., Chou, W., Uesaka, M., γ-γ collider, ICFA Beam Dynamics Newsletter 56 (2011) 27.
    [8]
    Federici, L., Giordano, G., Matone, G., Pasquariello, G., Picozza, P.G., et al., Backward compton scattering of laser light against high-energy electrons: the ladon photon beam at frascati, Il Nuovo Cimento 59 (2) (1980) 247–256.10.1007/BF02721314
    [9]
    Vaccarezza, C., Alesini, D., Anania, M., Bacci, A., Biagioni, A., et al., The sparc_lab thomson source, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 829 (Supplement C) (2016) 237–242.10.1016/j.nima.2016.01.089, 2nd European Advanced Accelerator Concepts Workshop - EAAC 2015.
    [10]
    Sandorfi, A.M., LeVine, M.J., Thorn, C.E., Giordano, G., Matone, G., et al., High energy γ ray beams from compton backscattered laser light, IEEE Trans. Nucl. Sci. 30 (4) (1983) 3083–3087.10.1109/TNS.1983.4336577.
    [11]
    Litvinenko, V.N., Burnham, B., Emamian, M., Hower, N., Madey, J.M.J., et al., Gamma-ray production in a storage ring free-electron laser, Phys. Rev. Lett. 78 (24) (1997) 4569–4572.10.1103/PhysRevLett.78.4569.
    [12]
    Serafini, L., Alesini, D., Bacci, N., Bliss, N., Cassou, K., et al., High Intensity x/γ Photon Beams for Nuclear Physics and Photonicsdoi.10.1051/epjconf/201611705002.
    [13]
    Petrillo, V., Bacci, A., Zinati, R.B.A., Chaikovska, I., Curatolo, C., et al., Photon flux and spectrum of γ-rays compton sources, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 693 (Supplement C) (2012) 109–116.10.1016/j.nima.2012.07.015
    [14]
    Miyamoto, S., Asano, Y., Amano, S., Li, D., Imasaki, K., et al., Laser compton back-scattering γ-ray beamline on newsubaru, Radiat. Meas. 41 (Supplement 2) (2006) S179–S185 10.1016/j.radmeas.2007.01.013, The 3rd International Workshop on Radiation Safety at Synchrotron Radiation Sources.
    [15]
    Guo, W., Xu, W., Chen, J., Ma, Y., Cai, X., et al., A high intensity beam line of gamma-rays up to 22mev energy based on compton backscattering, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 578 (3) (2007) 457–462.10.1016/j.nima.2007.05.322.
    [16]
    Rosa, A.D., Inglima, G., Sandoli, M., Prosperi, D., Giordano, G., et al., Multipole mixture contribution to the 28Si giant-resonance excitation, Lett. al Nuovo Cimento 40 (13) (1984) 401–406.10.1007/BF02739653
    [17]
    Ahmed, M.W., Blackston, M.A., Perdue, B.A., Tornow, W., Weller, H.R., et al., Near-threshold deuteron photodisintegration: an indirect determination of the gerasimov-drell-hearn sum rule and forward spin polarizability (γ0) for the deuteron at low energies, Phys. Rev. C 77 (4) (2008) 044005.10.1103/PhysRevC.77.044005
    [18]
    Blackston, M.A., Ahmed, M.W., Perdue, B.A., Weller, H.R., Bewer, B., et al., First observation of the splittings of the e1 p-wave amplitudes in low energy deuteron photodisintegration and its implications for the gerasimov-drell-hearn sum rule integrand, Phys. Rev. C 78 (3) (2008) 034003.10.1103/PhysRevC.78.034003
    [19]
    S. G. Rykovanov, C. G. R. Geddes, J.-L. Vay, C. B. Schroeder, E. Esarey, et al., Quasi-monoenergetic femtosecond photon sources from thomson scattering using laser plasma accelerators and plasma channels, J. Phys. B Atomic. Mol. Optical. Phys. 47 (23) 234013.
    [20]
    Geddes, C.G., Rykovanov, S., Matlis, N.H., Steinke, S., J.-L. V, et al., Compact quasi-monoenergetic photon sources from laser-plasma accelerators for nuclear detection and characterization, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 350 (Supplement C) (2015) 116–121.10.1016/j.nimb.2015.01.013
    [21]
    Rykovanov, S.G., Geddes, C.G.R., Schroeder, C.B., Esarey, E., Leemans, W.P., Controlling the spectral shape of nonlinear thomson scattering with proper laser chirping, Phys. Rev. Accel. Beams. 19 (2016) 030701.10.1103/PhysRevAccelBeams.19.030701
    [22]
    Seipt, D., Rykovanov, S.G., Surzhykov, A., Fritzsche, S., Narrowband inverse compton scattering x-ray sources at high laser intensities, Phys Rev A 91 (3) (2015) 033402.10.1103/PhysRevA.91.033402
    [23]
    Yokoya, K., User's Manual of Cain, Version 2.42 1, 2011, p. 1.
    [24]
    Rose, P., Erickson, A., Calibration of cherenkov detectors for monoenergetic photon imaging in active interrogation applications, Nucl. Instrum. Methods Phys. Res. Sect. A: 799 (Supplement C) (2015) 99–104.10.1016/j.nima.2015.07.065
    [25]
    Yang, W.S., Kim, Y., Hill, R.N., Taiwo, T.A., Khalil, H.S., Long-lived fission product transmutation studies, Nucl. Sci. Eng. 146 (2004) 291–318.10.13182/NSE04-A2411
    [26]
    Zhu, Z., Luo, W., Li, Z., Song, Y., Wang, X., Wang, X., Fan, G., Photo-transmutation of long-lived nuclear waste 135cs by intense compton gamma-ray source, Ann. Nucl. Energy 89 (Supplement C) (2016) 109–114.10.1016/j.anucene.2015.11.017
    [27]
    Li, D.Z., Imasaki, K.Z., Horikawa, K., Miyamoto, S.J., Amano, S., et al., Iodine transmutation through laser compton scattering gamma rays, J. Nucl. Sci. Technol. 46 (8) (2009) 831–835.10.1080/18811248.2007.9711592
    [28]
    Rauscher, T., Dauphas, N., Dillmann, I., Frhlich, C., Flp, Z., et al., Constraining the astrophysical origin of the p-nuclei through nuclear physics and meteoritic data, Rep. Prog. Phys. 76 (8) (2013) 066201.10.1088/0034-4885/76/6/066201
    [29]
    Berceau, P., Fouché, M., Battesti, R., Rizzo, C., Magnetic linear birefringence measurements using pulsed fields, Phys. Rev. A 85 (1) (2012) 013837.10.1103/PhysRevA.85.013837
    [30]
    Cadène, A., Sordes, D., Berceau, P., Fouché, M., Battesti, R., et al., Faraday and cotton-mouton effects of helium at λ=1064 nm, Phys. Rev. A 88 (4) (2013) 043815.10.1103/PhysRevA.88.043815
    [31]
    Bragin, S., Meuren, S., Keitel, C.H., Di Piazza, A., High-energy vacuum birefringence and dichroism in an ultrastrong laser field, Phys. Rev. Lett. 119 (2017) 250403.10.1103/PhysRevLett.119.250403
    [32]
    Drebot, I., Micieli, D., Milotti, E., Petrillo, V., Tassi, E., et al., Matter from light-light scattering via breit-wheeler events produced by two interacting compton sources, Phys. Rev. Accel. Beams. 20 (2017) 043402.10.1103/PhysRevAccelBeams.20.043402
    [33]
    Homma, K., Matsuura, K., Nakajima, K., Testing helicity-dependent gamma-gamma scattering in the region of mev, Prog. Theor. Exp. Phys. 2016 (1) (2016) 013C01.10.1093/ptep/ptv176
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(4)

    Article Metrics

    Article views (102) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return