Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 3 Issue 3
May  2018
Turn off MathJax
Article Contents
Li Xiaojia, Xiao Tingting, Chen Fengwei, Zhang Yingjuan, Li Xiaofei, Wu Weidong. A novel superconducting magnetic levitation method to support the laser fusion capsule by using permanent magnets[J]. Matter and Radiation at Extremes, 2018, 3(3). doi: 10.1016/j.mre.2018.01.004
Citation: Li Xiaojia, Xiao Tingting, Chen Fengwei, Zhang Yingjuan, Li Xiaofei, Wu Weidong. A novel superconducting magnetic levitation method to support the laser fusion capsule by using permanent magnets[J]. Matter and Radiation at Extremes, 2018, 3(3). doi: 10.1016/j.mre.2018.01.004

A novel superconducting magnetic levitation method to support the laser fusion capsule by using permanent magnets

doi: 10.1016/j.mre.2018.01.004
More Information
  • Corresponding author: *Corresponding author. Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China. E-mail addresses: shakalee@pku.edu.cn (X.J. Li), wuweidongding@163.com (W.D. Wu).
  • Received Date: 2017-11-28
  • Accepted Date: 2018-01-31
  • Publish Date: 2018-05-15
  • A novel magnetic levitation support method is proposed, which can relieve the perturbation caused by traditional support methods and provide more accurate position control of the capsule. This method can keep the perfect symmetry of the octahedral spherical hohlraum and has the characteristics in stability, tunability and simplicity. It is also favorable that all the results, such as supporting forces acting on the superconducting capsule, are calculated analytically, and numerical simulations are performed to verify these results. A typical realistic design is proposed and discussed in detail. The superconducting coating material is suggested, and the required superconducting properties are listed. Damped oscillation of the floating capsule in thin helium gas is discussed, and the restoring time is estimated.
  • loading
  • [1]
    R. Betti, V.N. Goncharov, R.L. McCrory, P. Sorotokin, C.P. Verdon, Self-consistent stability analysis of ablation fronts in inertial confinement fusion, Phys. Plasmas 3 (1996) 2122.10.1063/1.871664
    [2]
    V.N. Goncharov, R. Betti, R.L. McCrory, P. Sorotokin, C.P. Verdon, Self-consistent stability analysis of ablation fronts with large Froude numbers, Phys. Plasmas 3 (1996) 1402.10.1063/1.871730
    [3]
    K. Lan, J. Liu, X.T. He, W.D. Zheng, D.X. Lai, 2014, High flux symmetry of the spherical hohlraum with octahedral 6 LEHs at the hohlraum-to-capsule radius ratio of 5.14, Phys. Plasmas 21 (2014) 010704.10.1063/1.4863435
    [4]
    W. Huo, Z. Li, Y. Chen, X. Xie, K. Lan, et al., First investigation on the radiation field of the spherical hohlraum, Phys. Rev. Lett. 117 (2016) 025002.10.1103/physrevlett.117.025002
    [5]
    C.R. Weber, D.T. Casey, D.S. Clark, B.A. Hammel, A. MacPhee, et al., Improving ICF implosion performance with alternative capsule supports, Phys. Plasmas 24 (2017) 056302.10.1063/1.4977536
    [6]
    P.E. Coyle (Ed.), Laser Program Annual Report, vol. 4 (1996) p. 181.
    [7]
    D.A. Glocker, A proposed design for multishell cryogenic laser fusion targets using superconducting levitation, Appl. Phys. Lett. 39 (1981) 478.10.1063/1.92780
    [8]
    Y. Ishigaki, H. Ueda, K. Agatsuma, A. Ishiyama, Accurate position control of active magnetic levitation using sphere-shaped HTS bulk for inertial nuclear fusion, IEEE Trans. Appl. Supercond. 19 (2009) 3.10.1109/tasc.2009.2017898
    [9]
    T. Wang, H. Ueda, K. Agatsuma, A. Ishiyama, Evaluation of positional stability in active magnetic levitation using spherical HTS bulk for inertial nuclear fusion, IEEE Trans. Appl. Supercond. 21 (2011) 3.10.1109/tasc.2010.2098383
    [10]
    H. Yoshida, K. Katakami, Y. Sakagami, Magnetic suspension of a pellet for inertial confinement fusion, Laser Part. Beams 11 (1993) 455.10.1017/s0263034600005048
    [11]
    E.R. Koresheva, I.V. Aleksandrova, O.M. Ivanenko, V.A. Kalabukhov, E.L. Koshelev, et al., HTSC maglev systems for IFE target transport applications, J. Russ. Laser Res. 35 (2014) 151.10.1007/s10946-014-9410-y
    [12]
    J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, J. Akimitsu, Superconductivity at 39 K in magnesium diboride, Nature 410 (2001) 63.10.1038/35065039
    [13]
    M. Eisterer, Magnetic properties and critical currents of MgB2, Supercond. Sci. Technol. 20 (2007) 47. Topical Review.10.1088/0953-2048/20/12/r01
    [14]
    J. Gu, Z. Dai, S. Zou, W. Ye, W. Zheng, et al., Effects of mode coupling between low-mode radiation flux asymmetry and intermediate-mode ablator roughness on ignition capsule implosions, Matter Radiat. Extrem. 2 (2017) 9.10.1016/j.mre.2016.09.002
    [15]
    S.P. Regan, R. Epstein, B.A. Hammel, L.J. Suter, H.A. Scott, et al., Hot-spot mix in ignition-scale inertial confinement fusion targets, Phys. Rev. Lett. 111 (2013) 045001.10.1103/physrevlett.111.045001
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (277) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return