Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 3 Issue 5
Sep.  2018
Turn off MathJax
Article Contents
Wang Langning, Jia Yongsheng, Liu Jinliang. Photoconductive semiconductor switch-based triggering with 1 ns jitter for trigatron[J]. Matter and Radiation at Extremes, 2018, 3(5). doi: 10.1016/j.mre.2017.12.006
Citation: Wang Langning, Jia Yongsheng, Liu Jinliang. Photoconductive semiconductor switch-based triggering with 1 ns jitter for trigatron[J]. Matter and Radiation at Extremes, 2018, 3(5). doi: 10.1016/j.mre.2017.12.006

Photoconductive semiconductor switch-based triggering with 1 ns jitter for trigatron

doi: 10.1016/j.mre.2017.12.006
More Information
  • Corresponding author: *Corresponding author. E-mail address: wanglangning@126.com (L. Wang).
  • Received Date: 2017-07-24
  • Accepted Date: 2017-12-18
  • Publish Date: 2018-09-15
  • AbstractSynchronization for multiple-pulse at nanosecond range shows a great value on the power multiplication and synchronous electric fields applications. Nanosecond or sub-ns jitter synchronization is essential for the improved working efficiency of the large amounts of pulse modules and accurate requirements for the power coherent combining applications. This paper presents a trigger generator based on a laser diode-triggered GaAs photoconductive semiconductor switch (PCSS) with low jitter and compact size characteristics. It avoids the high currents that are harmful to high-gain mode PCSSs. In the trigger circuit, a 200 pF capacitor is charged by a microsecond-scale 18 kV pulse and then discharged via the high-gain mode GaAs PCSS to trigger the high-power trigatron switch. When triggered by the ∼10 ns pulse generated by the PCSS, the DC-charged trigatron can operate in the 20–35 kV range with 10 ns rise time and 1 ns delay-time jitter.
  • loading
  • [1]
    W.C. Nunnally, R.B. Hammond, 80 MW photoconductor power switch, Appl. Phys. Lett. 44 (10) (1984) 980–982.10.1063/1.94619
    [2]
    W. Shi, C. Ma, M. Li, Research on the failure mechanism of high-power GaAs PCSS, IEEE Trans. Power Electron. 30 (5) (2015) 2427–2434.10.1109/tpel.2014.2348493
    [3]
    F.J. Zutavern, G.M. Loubriel, M.W. O'Malley, L.P. Shanwald, W.D. Helgeson, et al., Photoconductive semiconductor switch experiments for pulsed power applications, IEEE Trans. Electron. Dev. 37 (12) (1990) 2472–2477.10.1109/16.64520
    [4]
    S. Ajram, G. Salmer, Ultrahigh frequency DC-to-DC converters using GaAs power switches, IEEE Trans. Power Electron. 16 (5) (2001) 594–601.10.1109/63.949492
    [5]
    J.S.H. Schoenberg, J.W. Burger, J.S. Tyo, M.D. Abdalla, M.C. Skipper, et al., Ultra-wideband source using gallium arsenide photoconductive semiconductor switches, IEEE Trans. Plasma Sci. 25 (2) (1997) 327–334.10.1109/27.602507
    [6]
    W. Shi, L. Tian, Z. Liu, L. Zhang, Z. Zhang, et al., 30 kV and 30 kA semi-insulating GaAs photoconductive semiconductor switch, Appl. Phys. Lett. 92 (4) (2008) 043511–043513.10.1063/1.2838743
    [7]
    W. Wang, L. Xia, Y. Chen, Y. Liu, C. Yang, et al., Research on synchronization of 15 parallel high gain photoconductive semiconductor switches triggered by high power pulse laser diodes, Appl. Phys. Lett. 106 (2015) 022108.10.1063/1.4906035
    [8]
    F.J. Zutavern, S.F. Glover, K.W. Reed, M.J. Cich, A. Mar, et al., Fiber-optically controlled pulsed power switches, IEEE Trans. Plasma Sci. 36 (5) (2008) 2533–2540 pt. 3.10.1109/tps.2008.2004367
    [9]
    A. Mar, G.M. Loubriel, F.J. Zutavern, M.W. O'Malley, W.D. Helgeson, et al., Doped contacts for high-longevity optically activated, high-gain GaAs photoconductive semiconductor switches, IEEE Trans. Plasma Sci. 28 (5) (2000) 1507–1511.10.1109/27.901223
    [10]
    Z. Jiang, W. Shi, L. Hou, H. Gui, W. Ji, et al., Effect of current filament characteristics on the output current of high-gain photoconductive semiconductor switch, Appl. Phys. Lett. 101 (2012) 192104.10.1063/1.4761999
    [11]
    J. Liu, Y. Zhang, Z. Chen, J. Feng, A compact 100-pps high-voltage trigger pulse generator, IEEE Trans. Electron. Dev. 57 (7) (2010) 1680–1686.10.1109/ted.2010.2047905
    [12]
    W.A. Stygar, M.E. Cuneo, D.I. Headley, H.C. Ives, R.J. Leeper, et al., Architecture of petawatt-class Z-pinch accelerators, Phys. Rev. Spec. Top.--Accel. Beams 10 (3) (2007) 030401.10.1103/physrevstab.10.030401
    [13]
    J.S. Green, S.N. Bland, M. Collett, A.E. Dangor, K. Krushelnick, et al., Effect of wire number on x-pinch discharges, Appl. Phys. Lett. 88 (26) (2006) 261501-1–261501-3.10.1063/1.2216110
    [14]
    D.E. Bliss, R.T. Collins, D.G. Dalton, A new laser trigger system for current pulse shaping and jitter reduction on Z, in: Proc. IEEE Int. Pulsed Power Conf, 2003, pp. 179–182.
    [15]
    M.E. Savage, B.S. Stoltzfus, High reliability low jitter 80 kV pulse generator, Phys. Rev. Spec. Top.--Accel. Beams 12 (2009) 080401.10.1103/physrevstab.12.080401
    [16]
    L. Cai, L. Li, Y. Liu, B. Yu, C. Bao, et al., Analysis of breakdown mechanism in trigatron switches, IEEE Trans. Dielectr. Electr. Insul. 20 (4) (2013) 1069–1075.10.1109/tdei.2013.6571419
    [17]
    R.E. Beverly, R.N. Campbell, Transverse-flow 50-kV trigatron switch for 100pps burst-mode operation, Rev. Sci. Instrum. 67 (4) (1996) 1593–1597.10.1063/1.1146901
    [18]
    S.F. Glover, F.J. Zutavern, M.E. Swalby, M.J. Cich, G.M. Loubriel, et al., Pulsed- and DC-charged PCSS-based trigger generators, IEEE Trans. Plasma Sci. 38 (10) (2010) 2701–2707.10.1109/tps.2010.2049662
    [19]
    D.D. Bloomquist, R.W. Stionett, D.H. McDaniel, Saturn: a large area X-ray simulation accelerator, in: Proc. IEEE Int. Pulsed Power Conf, 1987, pp. 310–317.
    [20]
    S.K. Lam, J. Banister, B. Christensen, Improvement on double-eagle machine synchronization in both negative and positive modes of operation, in: Proc. IEEE Int. Pulsed Power Conf, 1999, pp. 1453–1455.
    [21]
    Y. Zhang, J. Liu, Nanosecond-range multiple-pulse synchronization controlled by magnetic switches based on a communal magnetic core, IEEE Trans. Plasma Sci. 41 (2) (2013) 371–379.10.1109/tps.2013.2238559
    [22]
    X. Fan, J. Liu, An LC generator based on accurate synchronization controlling of multisecondary windings saturable pulse transformer, IEEE Trans. Plasma Sci. 42 (1) (2014) 149–153.10.1109/tps.2013.2288116
    [23]
    R.P. Joshi, P. Kayasit, N. Islam, E. Schamiloglu, C.B. Fleddermann, et al., Simulation studies of persistent photoconductivity and filamentary conduction in opposed contact semi-insulating GaAs high power switches, J. Appl. Phys. 86 (1999) 3833–3843.10.1063/1.371295
    [24]
    C. Luan, Y. Feng, Y. Huang, H. Li, X. Li, Research on a novel high-power semi-insulting GaAs photoconductive semiconductor switch, IEEE Trans. Plasma Sci. 44 (2016) 839–841.10.1109/tps.2016.2540161
    [25]
    C. Luan, B. Wang, Y. Huang, X. Li, H. L, et al., Study on the high-power semi-insulating GaAs PCSS with quantum well structure, AIP Adv. 6 (2016) 055216.10.1063/1.4952595
    [26]
    A. Mar, F.J. Zutavern, G.A. Vawter, H.P. Hjalmarson, R.J. Gallegos, et al., Electrical Breakdown Physics in Photoconductive Semiconductor Switches (PCSS), Sandia National Laboratory, 2016. SAND2016–0109.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(2)

    Article Metrics

    Article views (193) PDF downloads(91) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return