Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 3 Issue 3
May  2018
Turn off MathJax
Article Contents
Du Kai, Liu Meifang, Wang Tao, He Xiaoshan, Wang Zongwei, Zhang Juan. Recent progress in ICF target fabrication at RCLF[J]. Matter and Radiation at Extremes, 2018, 3(3). doi: 10.1016/j.mre.2017.12.005
Citation: Du Kai, Liu Meifang, Wang Tao, He Xiaoshan, Wang Zongwei, Zhang Juan. Recent progress in ICF target fabrication at RCLF[J]. Matter and Radiation at Extremes, 2018, 3(3). doi: 10.1016/j.mre.2017.12.005

Recent progress in ICF target fabrication at RCLF

doi: 10.1016/j.mre.2017.12.005
More Information
  • Corresponding author: *Corresponding author. E-mail address: icf802@163.com (K. Du).
  • Received Date: 2017-04-02
  • Accepted Date: 2017-12-15
  • Publish Date: 2018-05-15
  • Target is one of the essential parts in inertial confinement fusion (ICF) experiments. To ensure the symmetry and hydrodynamic stability in the implosion, there are stringent specifications for the target. Driven by the need to fabricate the target required by ICF experiments, a series of target fabrication techniques, including capsule fabrication techniques and the techniques of target characterization and assembly, are developed by the Research Center of Laser Fusion (RCLF), China Academy of Engineering Physics (CAEP). The capsule fabrication techniques for preparing polymer shells, glow discharge polymer (GDP) shells and hollow glass micro-sphere (HGM) are studied, and the techniques of target characterization and assembly are also investigated in this paper. Fundamental research about the target fabrication is also done to improve the quality of the target. Based on the development of target fabrication techniques, some kinds of target have been prepared and applied in the ICF experiments.
  • loading
  • [1]
    A.M. Dunne, HiPER: Technical Background and Conceptual Design Report 2007, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Central Laser Facility, 2007.
    [2]
    A.K. Tucker-Schwartz, Z. Bei, R.L. Garrell, T.B. Jones, Polymerization of electric field-centered double emulsion droplets to create polyacrylate shells, Langmuir 26 (2010) 18606–18611.10.1021/la103719z
    [3]
    N. Antipa, S. Baxamusa, E. Buice, A. Conder, M. Emerich, et al., Automated ICF capsule characterization using confocal surface profilometry, Fusion Sci. Technol. 63 (2013) 151–159.10.13182/fst20-38
    [4]
    K. Nagai, H. Yang, T. Norimatsu, H. Azechi, F. Belkada, et al., Fabrication of aerogel capsule, bromine-doped capsule, and modified gold cone in modified target for the Fast Ignition Realization Experiment (FIREX) Project, Nucl. Fusion 49 (2009) 095028.10.1088/0029-5515/49/9/095028
    [5]
    P.R. Paguio, S.P. Paguio, C.A. Frederick, A. Nikroo, and O. Acenas, Improving the yield of target quality Omega size PAMS mandrels by modifying emulsion components, Fusion Sci. Technol. 49 (2006) 743–749.10.13182/fst06-a1195
    [6]
    T. Nisisako, Recent advances in microfluidic production of Janus droplets and particles, Curr. Opin. Colloid Interface Sci. 25 (2016) 1–12.10.1016/j.cocis.2016.05.003
    [7]
    S. Waheed, J.M. Cabot, N.P. Macdonald, T. Lewis, R.M. Guijt, 3D printed microfluidic devices: enablers and barriers, Lab Chip 16 (2016) 1993–2013.10.1039/c6lc00284f
    [8]
    L.R. Shang, Y. Cheng, Y.J. Zhao, Emerging droplet microfluidics, Chem. Rev. 117 (2017) 7964–8040.10.1021/acs.chemrev.6b00848
    [9]
    X. Qu, Y. Wang, Dynamics of concentric and eccentric compound droplets suspended in extensional flows, Phys. Fluids 24 (2012) 123302–123321.10.1063/1.4770294
    [10]
    Liu, M.F., Liu, Y.Y., Li, J., Chen, S.F., Li, J., et al., Improvement of sphericity of thick-walled polystyrene shell, Colloids Surf. A 484 (2015) 463–470.10.1016/j.colsurfa.2015.08.031
    [11]
    M.F. Liu, L. Su, J. Li, S.F. Chen, Y.Y. Liu, Investigation of spherical and concentric mechanism of compound droplets, Matter Radiat. Extremes 1 (2016) 213–223.10.1016/j.mre.2016.07.002
    [12]
    M.F. Liu, S.F. Chen, X.B. Qi, B. Li, R.T. Shi, et al., Improvement of wall thickness uniformity of thick-walled polystyrene shells by density matching, Chem. Eng. J. 241 (2014) 466–476.10.1016/j.cej.2013.08.120
    [13]
    M.F. Liu, Y.Q. Zheng, J. Li, S.F. Chen, Y.Y. Liu, et al., 2017. Effects of molecular weight of PVA on formation, stability and deformation of compound droplets for ICF polymer shells, Nucl. Fusion 57, 016018.10.1088/0029-5515/57/1/016018
    [14]
    A. Nikroo, J.M. Pontelandolfo, E.R. Castillo, Coating and mandrel effects on fabrication of glow discharge polymer NIF scale indirect drive capsules, Fusion Sci. Technol. 41 (2002) 220–225.10.13182/fst02-a17903
    [15]
    S.A. Letts, D.W. Myers, L.A. Witt, Ultrasmooth plasma polymerized coatings for laser fusion targets, J. Vac. Sci. Technol., A 19 (1981) 739–742.10.1116/1.571142
    [16]
    D.G. Czechowicz, E.R. Castillo, A. Nikroo, Composition and structural studies of glow discharge polymer coatings, Fusion Sci. Technol. 41 (2002) 188–192.10.13182/fst41-188
    [17]
    A. Nikroo, D.G. Czechowicz, E.R. Castillo, J.M. Pontelandolfo, Recent progress in fabrication of high-strength glow discharge polymer shells by optimization of coating parameters, Fusion Sci. Technol. 41 (2002) 214–219.10.13182/fst41-214
    [18]
    M. Theobald, B. Dumay, C. Chicanne, J. Barnouin, O. Legaie, et al., Roughness optimization at high modes for GDP CHx microshells, Fusion Sci. Technol. 45 (2004) 176–179.10.13182/fst04-a446
    [19]
    K.C. Chen, R.C. Cook, H. Huang, S.A. Letts, A. Nikroo, Fabrication of graded germanium-doped CH shells, Fusion Sci. Technol. 49 (2006) 750–755.10.13182/fst06-a1196
    [20]
    L. Zhang, X.S. He, G. Chen, T. Wang, Y.J. Tang, et al., Effects of rf power on chemical composition and surface roughness of glow discharge polymer films, Appl. Surf. Sci. 366 (2016) 499–505.10.1016/j.apsusc.2016.01.100
    [21]
    J.P. Booth, G. Cunge, CFx radical production and loss in a CF4 reactive ion etching plasma: fluorine rich conditions, J. Appl. Phys. 85 (1999) 3097–3102.10.1063/1.369649
    [22]
    G. Chen, L. Zhang, X.S. He, Z.B. He, Y.J. Tang, Effect of the gas flow ratio of T2B/H2 on the composition and surface roughness of glow discharge polymer films, At. Energy Sci. Technol. 9 (2016) 1658–1663.
    [23]
    R.W. Luo, A.L. Greenwood, A. Nikroo, C. Chen, Properties of silicon-doped GDP shells used for cryogenic implosions at OMEGA, Fusion Sci. Technol. 55 (2009) 456–460.10.13182/fst09-a7426
    [24]
    R. Brusasco, M. Saculla, R. Cook, Preparation of germanium doped plasma polymerized coatings as inertial confinement fusion target, J. Vac. Sci. Technol., A 13 (1995) 948–951.10.1116/1.579656
    [25]
    S.A. Letts, E.M. Fearon, S.R. Buckley, M.D. Saculla, L.M. Allison, et al., Fabrication of polymer shells using a decomposable mandrel, Fusion Technol. 28 (1995) 1797–1802.10.13182/fst28-5-1797
    [26]
    M.L. Hoppe, Large glass shells from GDP shells, Fusion Technol. 38 (2000) 42–48.10.13182/fst00-a36113
    [27]
    M.L. Hoppe, Recent developments in making glass shells from silicon doped GDP shells, Fusion Sci. Technol. 41 (2002) 234–237.10.13182/fst02-a17905
    [28]
    W. Xu, T. Wang, Z.B. He, Z.W. Wu, Fabrication of hollow glass microspheres for inertial confinement fusion targets depolymerizable mandrel method, High Power Laser Part. Beams 27 (2015) 62008–62015.10.3788/hplpb20152706.62008
    [29]
    W. Xu, T. Wang, Z.W. Wu, Z.B. He, Influence of pressure on structure and properties of hollow glass microspheres, High Power Laser Part. Beams 27 (2015) 122004–122010.
    [30]
    W. Rensel, T. Henderson, D. Solomon, Novel method for measuring total pressure of fuel gas in hollow, glass microshell pellet, Rev. Sci. Instrum. 46 (1975) 787–789.10.1063/1.1134313
    [31]
    M. Salazar, P. Gobby, R. Watt, Pressure testing of micro balloons by bursting, Fusion Technol. 38 (2000) 136–138.10.13182/fst00-a36130
    [32]
    J. Sanchez, R. Upadhye, Non-destructive method for measuring the D2/DT fill pressure and permeability for direct drive plastic shells, Nucl. Fusion 31 (1991) 459–464.10.1088/0029-5515/31/3/005
    [33]
    S. Ohira, H. Akamura, S. Konishi, T. Hayashi, K. Okuno, et al., On-line tritium process gas analysis laser Raman spectroscopy at TSTA, Fusion Technol. 21 (1992) 465–470.
    [34]
    H. Deckman, G. Halpern, Fuel content characterization and pressure retention measurements of DT-filled laser fusion microballoon targets, Appl. Phys. 50 (1979) 132–139.10.1063/1.325696
    [35]
    D. Steinman, E. Alfonso, M. Hoppe, Developments in capsule gas fill half-life determination, Fusion Sci. Technol. 51 (2007) 544–546.10.13182/fst07-a1441
    [36]
    Z. Wang, D. Gao, X. Ma, J. Meng, White-light interferometry for measuring fuel pressure in ICF polymer-microsphere targets, Fusion Sci. Technol. 66 (2014) 432–437.10.13182/fst14-808
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(2)

    Article Metrics

    Article views (125) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return