Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 3 Issue 3
May  2018
Turn off MathJax
Article Contents
Mima K., Fuchs J., Taguchi T., Alvarez J., Marquès J.R., Chen S.N., Tajima T., Perlado J.M.. Self-modulation and anomalous collective scattering of laser produced intense ion beam in plasmas[J]. Matter and Radiation at Extremes, 2018, 3(3). doi: 10.1016/j.mre.2017.12.004
Citation: Mima K., Fuchs J., Taguchi T., Alvarez J., Marquès J.R., Chen S.N., Tajima T., Perlado J.M.. Self-modulation and anomalous collective scattering of laser produced intense ion beam in plasmas[J]. Matter and Radiation at Extremes, 2018, 3(3). doi: 10.1016/j.mre.2017.12.004

Self-modulation and anomalous collective scattering of laser produced intense ion beam in plasmas

doi: 10.1016/j.mre.2017.12.004
More Information
  • Corresponding author: *Corresponding author. The Graduate School for the Creation of New Photonics Industries, 1955-1, Kurematsu, Nishiku, Hamamatsu, Japan. E-mail addresses: k.mima@gpi.ac.jp (K. Mima), julien.fuchs@polytechnique.edu (J. Fuchs).
  • Received Date: 2017-07-23
  • Accepted Date: 2017-12-11
  • Publish Date: 2018-05-15
  • The collective interaction between intense ion beams and plasmas is studied by simulations and experiments, where an intense proton beam produced by a short pulse laser is injected into a pre-ionized gas. It is found that, depending on its current density, collective effects can significantly alter the propagated ion beam and the stopping power. The quantitative agreement that is found between theories and experiments constitutes the first validation of the collective interaction theory. The effects in the interaction between intense ion beams and background gas plasmas are of importance for the design of laser fusion reactors as well as for beam physics.
  • loading
  • [1]
    F. Najmabadi, A.R. Raffray, ARIES-IFE Team, S.I. Abdel-Khalik, L. Bromberg, et al., Operational windows for dry-wall and wetted-wall IFE chambers, Fusion Sci. Technol. 46 (2004) 401–416.10.13182/fst04-a580
    [2]
    M. Roth, T.E. Cowan, M.H. Key, S.P. Hatchett, C. Brownet, et al., Fast ignition by intense laser-accelerated proton beams, Phys. Rev. Lett. 86 (2001) 436–439.10.1103/physrevlett.86.436
    [3]
    T.N. Kato, , H. Takabe, , 2010. Electrostatic and electromagnetic instabilities associated with electrostatic shock: two-dimensional particle-in-cell simulation, Phys. Plasmas 17 (2010) 03211-1-10.10.1063/1.3372138
    [4]
    L.O. Silva, M. Marti, J. Davies, R.A. Fonseca, C. Ren, et al., Proton shock acceleration in laser-plasma interaction, Phys. Rev. Lett. 92 (2004) 015002-1-4.10.1103/physrevlett.92.015002
    [5]
    G. Sorasio, M. Marti, R. Fonseca, L.O. Silva, Very high mach-number electrostatic shocks in collision-less plasmas, Phys. Rev. Lett. 96 (2006) 045005-1-4.10.1103/physrevlett.96.045005
    [6]
    E. Baldwin, Shock Wave Blasts Through Galaxy, 2009. Astronomy Now, Posted: 23 April.
    [7]
    T. Amano, M. Hoshino, Electron shock surfing acceleration in multi-dimensions: two-dimensional particle-in-cell simulation of collision-less perpendicular shock, APJ 690 (2009) 244–251.10.1088/0004-637x/690/1/244
    [8]
    H.-C. Wu, T. Tajima, D. Habs, A.W. Chao, J. Meyer-ter-Vehn, Collective deceleration: toward a compact beam dump, Phys. Rev. Spec. Top. Accel. Beams 13 (2010) 101303-1-8.10.1103/physrevstab.13.101303
    [9]
    E.A. Starstev, R.C. Davidson, M. Dorf, Two-stream stability properties of the return-current layer for intense ion beam propagation through background plasma, Phys. Plasmas 16 (2009) 092101-1-8.10.1063/1.3213566
    [10]
    F.F. Chen, Introduction to Plasma Physics and Controlled Fusion, second ed., Plenum Press, New York, 1984. Chapt. 6.
    [11]
    A. Bred, M.C. Firpo, C. Deutsch, Characterization of the initial filamentation of a relativistic electron beam passing through a plasma, Phys. Rev. Lett. 94 (2005) 115002-1-4.10.1103/PhysRevLett.94.115002
    [12]
    A. Frank, A. Blažević, P.L. Grande, K. Harres, T. Heßling, et al., Energy loss of argon in a laser-generated carbon plasma, Phys. Rev. E 81 (2010) 026401-1-6.10.1103/physreve.81.026401
    [13]
    S.P. Hatchett, C.G. Brown, T.E. Cowan, E.A. Henry, J.S. Johnson, Electron, proton, and ion beam from the relativistic interaction of petawatt laser pulses with solid targets, Phys. Plasmas 7 (2000) 2076–2082.10.1063/1.874030
    [14]
    E.L. Clark, K. Krushelnick, J.R. Davies, M. Zepf, M. Tatarakis, et al., Measurements of energetic proton transport through magnetized plasma from intense laser interactions with solids, Phys. Rev. Lett. 84 (2000) 670–673.10.1103/physrevlett.84.670
    [15]
    R.A. Snavely, M.H. Key, S.P. Hatchett, T.E. Cowan, M. Roth, et al., Intense high-energy proton beams from petawatt-laser irradiation of solids, Phys. Rev. Lett. 85 (2000) 2945–2948.10.1103/physrevlett.85.2945
    [16]
    J. Fuchs, T.E. Cowan, P. Audebert, H. Ruhl, L. Gremillet, et al., Spatial uniformity of laser-accelerated ultra high current MeV electron propagation in metals and insulators, Phys. Rev. Lett. 91 (2003) 255002-1-4.10.1103/physrevlett.91.255002
    [17]
    T.E. Cowan, J. Fuchs, H. Ruhl, A. Kemp, P. Audebert, et al., Ultralow emittance, multi-MeV proton beams from a laser virtual cathode plasma accelerator, Phys. Rev. Lett. 92 (2004) 204801-1-4.10.1103/physrevlett.92.204801
    [18]
    P. Mora, Thin-foil expansion into a vacuum, Phys. Rev. E 72 (2005) 056401-1-5.10.1103/physreve.72.056401
    [19]
    M. Borghesi, J. Fuchs, S.V. Bulanov, A.J. Mackinnon, P.K. Patel, et al., Fast ion generation by high-intensity laser irradiation of solid targets and applications, Fus. Sci. Technol. 49 (2006) 412–439.10.13182/fst06-a1159
    [20]
    M. Roth, A. Blazevic, M. Geissel, T. Schlegel, T.E. Cowan, et al., Energetic ions generated by laser pulses: a detailed study on target properties, Phys. Rev. Spec. Top.--Accel. Beams 5 (2002) 061301-1-8.10.1103/physrevstab.5.061301
    [21]
    S. Ter-Avetisyan, M. Borgheshi, M. Schnurer, P.V. Nickles, W. Sandner, et al., Characterization and control of ion sources from ultra-short high-intensity laser-foil interaction, Plasma Phys. Controlled Fusion 51 (2009) 124046-1-8.10.1088/0741-3335/51/12/124046
    [22]
    M. Borghesi, A.J. Mackinnon, D.H. Campbell, D.G. Hicks, S. Ker, et al., Multi-MeV proton source investigations in ultraintense laser-foil interactions, Phys. Rev. Lett. 92 (2004) 055003-1-4.10.1103/physrevlett.92.055003
    [23]
    T. Taguchi, T.M. Antonsen Jr., K. Mima, Study of hot electron beam transport in high density plasma using 3D hybrid-Darwin code, Comput. Phys. Commun. 164 (2004) 269–278.10.1016/j.cpc.2004.06.038
    [24]
    A. Flacco, F. Sylla, M. Veltcheva, M. Carrié, et al., Dependence on pulse duration and foil thickness in high-contrast-laser proton acceleration, Phys. Rev. E 81 (2010) 036405.10.1103/physreve.81.036405
    [25]
    S. Fourmaux, S. Buffechoux, B. Albertazzi, D. Capelli, A. Levy, et al., Investigation of laser-driven proton acceleration using ultra-short, ultra-intense laser pulses, Phys. Plasmas 20 (2013) 013110.10.1063/1.4789748
    [26]
    A. Kemp, J. Fuchs, Y. Sentoku, V. Sotnikov, M. Bakeman, et al., Emittance growth mechanisms for laser-accelerated proton beams, Phys. Rev. E 75 (2007) 056401.10.1103/physreve.75.056401
    [27]
    S. Ichimaru, Basic Principles of Plasma Physics, 1973. Reading, MA.
    [28]
    B. Hao, W.J. Ding, Z.M. Sheng, C. Ren, J. Zhang . Plasma thermal effect on the relativistic current-filamentation and two-stream instabilities in a hot-beam warm-plasma system, Phys. Rev. E 80 (2009) 066402-1-5.10.1103/physreve.80.066402
    [29]
    N.V. Klassen, L. van der Zwan, J. Cygler, GafChromic MD-55: investigated as a precision dosimeter, Med. Phys. 24 (1997) 1924–1934.10.1118/1.598106
    [30]
    B. Wattellier, J. Fuchs, J.P. Zou, K. Abdeli, H. Pépin, et al., Repetition rate increase and diffraction-limited focal spots for a nonthermal-equilibrium 100-TW Nd:glass laser chain by use of adaptive optics, Opt. Lett. 29 (2004) 2494–2496.10.1364/ol.29.002494
    [31]
    R.B. Miller, On electron beam propagation in neutral gases, in: An Introduction to the Physics of Intense Charged Particle Beams, 1982. Plenum, New York.
    [32]
    Y.A. Omelchenko, V.I. Sotnikov, V.D. Shapiro, V.I. Shevchenko, Strong Langmuir turbulence and beam plasma discharge in the ionospheric plasma, Planet. Space Sci. 40 (1992) 535–540.10.1016/0032-0633(92)90172-k
    [33]
    L. Lancia, M. Grech, S. Weber, J.-R. Marquès, L. Romagnani, et al., Anomalous self-generated electrostatic fields in nanosecond laser-plasma interaction, Phys. Plasmas 18 (2011) 030705.10.1063/1.3555522
    [34]
    J. Alvarez, D. Garoz, R.G. Arrabal, A. Ribera, M. Perlado, The role of spatial and temporal radiation deposition in inertial fusion chambers: the case of HiPER, Nucl. Fusion 51 (2011) 053019-1-5.10.1088/0029-5515/51/5/053019
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views (70) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return