Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 3 Issue 1
Jan.  2018
Turn off MathJax
Article Contents
Hofmann Ingo. Review of accelerator driven heavy ion nuclear fusion[J]. Matter and Radiation at Extremes, 2018, 3(1). doi: 10.1016/j.mre.2017.12.001
Citation: Hofmann Ingo. Review of accelerator driven heavy ion nuclear fusion[J]. Matter and Radiation at Extremes, 2018, 3(1). doi: 10.1016/j.mre.2017.12.001

Review of accelerator driven heavy ion nuclear fusion

doi: 10.1016/j.mre.2017.12.001
  • Received Date: 2017-12-01
  • Publish Date: 2018-01-15
  • Using high energy accelerators for energy production by nuclear fission goes back to the 1950's with plans for “breeder accelerators” as well as with early ideas on subcritical reactors, which are currently pursued in China and other countries. Also, fusion came in, when the idea emerged in the mid 1970's to use accelerators and their highly time and space compressed beams in order to generate the extremely high density and temperatures required for inertial fusion energy production. Due to the higher repetition rates and efficiencies of accelerators, this was seen as a promising alternative to using high power lasers. After an introduction to nuclear fission applications of accelerators, this review summarizes some of the scientific developments directed towards this challenging application – with focus on the European HIDIF-study- and outlines parameters of future high energy density experiments after construction of the FAIR/Germany and HIAF/China heavy ion accelerator projects.
  • Also at Technical University Darmstadt, Schlossgartenstr. 8, 64289
  • loading
  • [1]
    P. Grand, H. Takahashi, Breeding nuclear fuels with accelerators-replacement for breeder reactors. Nucl. Instrum. Methods Phys. Res., Sect. B 10-11 (1985) 454.10.1016/0168-583x(85)90287-3
    [2]
    A. Maschke, reportFirst Proposal Unpublished, Internal Report (See Ref. [3]).
    [3]
    R. O. Bangerter, W. B. Herrmannsfeldt, D. L. Judd, L. Smith, In: Proceedings of the ERDA Summer Study of Heavy Ions for Inertial Fusion, 1976. Oakland/Calif., Report LBL-5543.
    [4]
    D. Keefe, Inertial confinement fusion. Annu. Rev. Plant Sci. 32 (1982) 391.10.1146/annurev.ns.32.120182.002135
    [5]
    W. E. Crandall, G. P. Millburn, Neutron production at high energies. J. Appl. Phys. 29 (1958) 629.10.1063/1.1723254
    [6]
    C. D. Bowman, Accelerator-driven systems for nuclear waste transmutation. Annu. Rev. Nucl. Part. Sci. 48 (1998) 505.10.1146/annurev.nucl.48.1.505
    [7]
    C. Rubbia, J. A. Rubio, S. Buono, F. Carminati, N. Fietier, et al., Conceptual Design of a Fast Neutron Operated High Power Energy Amplifier CERN-Report AT/95–44 (ET), 1995.
    [8]
    W.-L. Zhan. ADS Roadmap in China. ADS/ADTR Workshop, Beijing, 7–8 Juli, 2010.
    [9]
    A. C. Mueller, Transmutation of nuclear waste and the future MYRRHA demonstrator. J. Phys. Conf. 420 (012059) (2013).10.1088/1742-6596/420/1/012059
    [10]
    H. Takei, K. Nishihara, T. Tsujimoto, H. Oigawa, In: Int. Workshop on Techn. And Components of Accelerator Driven Systems, Karlsruhe, Germany, March 2010. OECD-NEA, 2011, p. 231.
    [11]
    Proceedings of the Heavy Ion Fusion Workshop. Oct. 17–21, 1977. Brookhaven National Laboratory. Upton Report BNL-50769 (1977).
    [12]
    Proceedings of the Heavy Ion Fusion Workshop, Sept. 19–26, 1978, 1978. Argonne National Laboratory, Argonne. Report ANL-79-41.
    [13]
    Proceedings of the ERDA Symposium on Heavy Ions for Inertial Fusion. Oct. 29–Nov. 9, 1979. Oakland/Calif., Report SLAC-PUB 2575(1980).
    [14]
    Proceedings of the 4th International Symposium on Accelerator Aspects of Heavv Ion Fusion. March 29–April 2, 1982. Darmstadt, Germany, Report GSI-82–88 (1982).
    [15]
    I. Hofmann, L. J. Laslett, L.Smith, I.Haber, Part. Accel. 13 (1983) 145.
    [16]
    J. Struckmeier, M. Reiser, Part. Accel. 14 (1984) 227.
    [17]
    M. G. Tiefenbach, D. Keefe, IEEE Trans. Nucl. Sci. 32 (1985) 2483 M.G. Tiefenbach, “Space Charge Limits on the Transport of Ion Beams”, Ph.D. thesis University of California, Berkeley, CA, 1986, LBL-Report No. LBL-22465, 1986.
    [18]
    J. Meyer-ter-Vehn, Ref. 14, p. 514.
    [19]
    D. H. H. Hoffmann, K. Weyrich, H. Wahl, T. Peter, J. Meyer-ter-vehn, et al., Experimental observation of enhanced stopping of heavy-ions in a hydrogen plasma. Zeitschr. f. Physik A, Hadrons and Nucl 330 (3) (1988) 339.10.1007/bf01294879
    [20]
    L. Teng, Ref. 14, p. 356.
    [21]
    I. Hofmann and I. Boszik, Ref. 14, P. 181ff and P. 362ff.
    [22]
    R. Bock, I. Hofmann, R. Arnold, Nucl. Sci. Appl. 2 (97) (1984).
    [23]
    R. M. Bock, I. Hofmann, D. H. H. Hofmann, G. Logan, Inertial confinement fusion: heavy ions. In: Landolt-Boernstein, New Series VIII/3, 10, 2004.
    [24]
    T. Yamaki, et al., HIBLIC-1, Conceptual Design of a Heavy Ion Fusion Reactor. Institute for Plasma Physics, Nagoya University, 1985. Report IPPJ-663.
    [25]
    S. Kawata, T. Karino, A. I. Ogoyski, Review of heavy-ion inertial fusion physics. Matter Radiat at Extreme 1 (2016) 89.10.1016/j.mre.2016.03.003
    [26]
    B. Y. Sharkov, D. H. H. Hoffmann, A. A. Golubev, Y. Zhao, High energy density physics with intense ion beams. Matter Radiat at Extreme 1 (2016) 28.10.1016/j.mre.2016.01.002
    [27]
    Y. Zhao, Y. Sun, G. Xu, J. Ren, L. Sheng, et al., High energy density physics research at IMP, Lanzhou, China. High Power Laser Sci. Eng. 2 (2014) 39.10.1017/hpl.2014.44
    [28]
    20th International Symposium on Heavy Ion Inertial Fusion. August 10–15, 2015. Lanzhou, China (Proceedings to be published in Laser and Particle Beams).
    [29]
    D. Böhne, I. Hofmann, G. Kessler, G. L. Kulcinski, J. Meyer-ter-Vehn, , et al., HIBALL—a conceptual design study of a heavy-ion driven inertial confinement fusion power plant. Nucl. Eng. Des. 73 (1982) 195.10.1016/0029-5493(82)90293-x
    [30]
    HIDIF, European Study Group on Heavy Ion Driven Inertial Fusion, I. Hofmann and G. Plass, GSI-report, GSI-98–06, 1998.
    [31]
    W. R. Meier, J. J. Barnard, R. O. Bangerter, A 3.3MJ, Rb+1 driver design based on an integrated systems analysis. Nucl. Instrum. Methods Phys. Res., Sect. A 464 (2001) 433.10.1016/s0168-9002(01)00101-2
    [32]
    J. Meyer-ter-Vehn, On energy gain of fusion targets: the model of Kidder and Bodner improved. Nucl. Fusion 22, 561 (1982) doi: 10.1088/0029-5515/22/4/010
    [33]
    J. D. Lindl, Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys. Plasmas 2 (1995) 3933 and Inertial Confinement Fusion, Springer, New York (1998).10.1063/1.871025
    [34]
    J. D. Lindl, Nuovo Cimento, 106 A, 1993, p. 1467.10.1007/bf02821241
    [35]
    J. Maruhn, K. H. Kang, Fusion Technol. 31 (1997) 251.10.13182/fst97-a30829
    [36]
    M. J. Monsler, W. R. Meier, Fusion Technol. 26 (1994) 873 31, 280 (1997).10.13182/fst94-a40264
    [37]
    W. R. Meier, R. L. Bieri, M. J. Monsler, C. D. Hendricks, P. Laybourne, et al., OSIRIS and SOMBRERO, ICF Power Plant Designs WJSA-9201 DOE/ER/54100, 1992 (2 Vols.).
    [38]
    E. I. Moses, R. E. Bonanno, C. A. Haynam, R. L. Kauffman, B. J. MacGowan, et al., 2007. The National ignition facility. Europ. Phys. Journ. D 44, 215.10.1140/epjd/e2006-00106-3
    [39]
    see http://www-lmj.cea.fr/index.htm.
    [40]
    D. Keefe, Part. Accel. 11 (1981) 197.
    [41]
    R. O. Bangerter, The U.S. heavy ion fusion program. Nucl. Instr. and Meth. A 415 (1998) 3 J.J. Barnard et al., ibid. p. 218.
    [42]
    P. Spiller, I. Hofmann, Optics of final beam transport and focusing for a heavy-ion ignition facility. Nucl. Instrum. Methods Phys. Res., Sect. A 415 (1998) 384.10.1016/s0168-9002(98)00515-4
    [43]
    C. R. Prior, G. H. Rees, Multiturn injection and lattice design for HIDIF. Nucl. Instr. and Meth. A 415 (1998) 357.10.1016/s0168-9002(98)00406-9
    [44]
    High-powered Lasers Deliver Fusion Energy Breakthrough, 2014. Scientific American. February 12.
    [45]
    C. Rubbia, Particle accelerator developments and their applicability to ignition devices for inertial fusion. Nucl. Instrum. Methods Phys. Res., Sect. A 278 (1989) 253.10.1016/0168-9002(89)91178-9
    [46]
    I. Hofmann, Principles of non-Liouvillean pulse compression by photoionization for heavy-ion fusion drivers. Laser Part. Beams 8 (1990) 527.10.1017/s026303460000896x
    [47]
    I. Strasik, E. Mustafin, M. Pavlovic, Residual activity induced by heavy ions and beam-loss criteria for heavy-ion accelerators. Phys. Rev. Spec. Top.--Accel. Beams 13 (2010) 071004.10.1103/physrevstab.13.071004
    [48]
    J. Bosser, C. Carli, M. Chanel, Experimental Investigation of Electron Cooling and Stacking of Lead Ions in a Low Energy Accumulator Ring. Laboratory Note CERN-PS-99-033-DI, Geneva, 1999.
    [49]
    S. Y. Zhang, Laboratory Note AGS Technical Note No. 477, May 1998.
    [50]
    W. Fischer, M. Bai, M. Blaskiewicz, J. M. Brennan, P. Cameron, et al., In: Proceedings of the European Particle Accelerator Conference EPAC 2002, Paris, 2002, p. 1485.
    [51]
    O. Boine-Frankenheim, A. Krämer, E. Mustafin, H. Reich-Sprenger, P. Spiller, In: Proceedings of the European Particle Accelerator Conference EPAC 2002, Paris, 2002, p. 2547.
    [52]
    P. Spiller, W. Barth, FAIR—status and relevance for heavy ion fusion. Nucl. Instrum. Methods Phys. Res., Sect. A 733 (2014) 171.10.1016/j.nima.2013.05.078
    [53]
    D. H. H. Hoffmann, N. A. Tahir, S. Udrea, O. Rosmej, C. V. Meister, et al., High energy density physics with heavy ion beams and related interaction phenomena. Contrib. Plasma Phys. 50 (1) (2010) 7.10.1002/ctpp.201010004
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(2)

    Article Metrics

    Article views (157) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return