Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 3 Issue 2
Mar.  2018
Turn off MathJax
Article Contents
Cheng Rui, Lei Yu, Zhou Xianming, Wang Yuyu, Chen Yanhong, Zhao Yongtao, Ren Jieru, Sheng Lina, Yang Jiancheng, Zhang Zimin, Du Yingchao, Gai Wei, Ma Xinwen, Xiao Guoqing. Warm dense matter research at HIAF[J]. Matter and Radiation at Extremes, 2018, 3(2). doi: 10.1016/j.mre.2017.11.001
Citation: Cheng Rui, Lei Yu, Zhou Xianming, Wang Yuyu, Chen Yanhong, Zhao Yongtao, Ren Jieru, Sheng Lina, Yang Jiancheng, Zhang Zimin, Du Yingchao, Gai Wei, Ma Xinwen, Xiao Guoqing. Warm dense matter research at HIAF[J]. Matter and Radiation at Extremes, 2018, 3(2). doi: 10.1016/j.mre.2017.11.001

Warm dense matter research at HIAF

doi: 10.1016/j.mre.2017.11.001
More Information
  • Corresponding author: *Corresponding author.; **Corresponding author. E-mail addresses: chengrui@impcas.ac.cn (R. Cheng), xiaogq@impcas.ac.cn (G.Q. Xiao).
  • Received Date: 2017-06-15
  • Accepted Date: 2017-11-09
  • Publish Date: 2018-03-15
  • The research activities on warm dense matter driven by intense heavy ion beams at the new project High Intensity heavy-ion Accelerator Facility (HIAF) are presented. The ion beam parameters and the simulated accessible state of matter at HIAF are introduced, respectively. The progresses of the developed diagnostics for warm dense matter research including high energy electron radiography, multiple-channel pyrometer, in-situ energy loss and charge state of ion detector are briefly introduced.
  • loading
  • [1]
    R.C. Davidson, Frontiers in High Energy Density Physics, National Research Council of the National Academies. National Academies Press, Washington, DC, USA, 2003.
    [2]
    R.W. Lee, D. Kalantar, J. Molitoris, Warm Dense Matter: An Overview, 2004 in Livemore, UCRL-TR-203844.
    [3]
    G.W. Collins, L.B. Da Silva, P. Celliers, D.M. Gold, M.E. Foord, et al., Measurements of the equation of state of deuterium at the fluid insulator-metal transition. Science 281 (1998) 1178.10.1126/science.281.5380.1178
    [4]
    N.A. Tahir, A. Shutov, A.R. Piriz, Th. Stöhlker, High energy density physics research using intense heavy ion beam at FAIR: the HEDgeHOB program. J. Phys.: Conf. Ser. 688 (2016) 012118.10.1088/1742-6596/688/1/012118
    [5]
    D.H.H. Hoffmann, V.E. Fortov, M. Kuster, V. Mintsev, B.Y. Sharkov, et al., High energy density physics generated by intense heavy ion beams. Astrophy Space Sci. 322 (2009) 167.10.1007/s10509-009-0001-2
    [6]
    Y.T. Zhao, R. Cheng, Y.Y. Wang, X.M. Zhou, Y. Lei, et al., Heigh energy density physics research at IMP, Lanzhou, China. High Power Laser Sci. Eng. 2 (2014) e39.10.1017/hpl.2014.44
    [7]
    P. Renaudin, C. Blancard, G. Faussurier, P. Noiret, Combined pressure and electrical-resistivity measurements of warm dense aluminum and titanium plasmas. Phys. Rev. Lett. 88 (2002) 215001.10.1103/physrevlett.88.215001
    [8]
    I. Krisch, H.J. Kunze, Measurements of electrical conductivity and mean ionization state of nonideal aluminum plasmas. Phys. Rev. E 58 (1998) 6557.10.1103/physreve.58.6557
    [9]
    S. Saleem, J. Haun, H.-J. Kunze, Electrical conductivity measurements of strongly coupled W plasmas. Phys. Rev. E 64 (2001) 056403.10.1103/physreve.64.056403
    [10]
    T. Sasaki, M. Nakajima, T. Kawamura, K. Horioka, Semi-empirical approach to pulsed wire discharges in water as a method for warm dense matter studies. J. Plasma Fusion Res. 81 (12) (2005) 965.10.1585/jspf.81.965
    [11]
    T. Sasaki, Y. Yano, M. Nakajima, T. Kawamura, K. Horioka, Evaluation of copper conductivity in warm dense state using exploding wire in water. Laser Part. Beams 24 (2006) 371 Prog. Nucl. Energy 50 (2008) 611.10.1017/s0263034606060538
    [12]
    H. Yoneda, H. Morikami, K. Ueda, R.M. More, Ultrashort-pulse laser ellipsometric pump-probe experiments on gold targets. Phys. Rev. Lett. 91 (2003) 075004.10.1103/physrevlett.91.075004
    [13]
    S.H. Glenzer, G. Gregori, F.J. Rogers, D.H. froula, S.W. Pollaine, R.S. Wallace, X-ray scattering from solid density plasmas. Phys. Plasma. 10 (2003) 2433.10.1063/1.1570420
    [14]
    S.H. Glenzer, O.L. Landen, P. Neumayer, R.W. Lee, K. Widmann, et al., Observations of plasmons in warm dense matter. Phys. Rev. Lett. 98 (2007) 06500.10.1103/physrevlett.98.065002
    [15]
    D.H.H. Hoffmanna, A. Blazevic, S. Korostiy, P. Ni, S.A. Pikuz, et al., Inertial fusion energy issues of intense heavy ion and laser beams interacting with ionized matter studied at GSI-Darmstadt. Nucl. Instrum. Methods Phys. Res., Sect. A 577 (2007) 8–13.10.1016/j.nima.2007.02.005
    [16]
    B.G. Logan, F.M. Bieniosek, C.M. Celata, J. Coleman, W. Greenway, et al., Recent US advances in ion-beam-driven high energy density physics and heavy ion fusion. Nucl. Instrum. Methods Phys. Res., Sect. A 577 (2007) 1–7.10.1016/j.nima.2007.02.070
    [17]
    S. Kawataa, K. Horiokab, M. Murakamic, Y. Ogurib, J. Hasegawab, et al., Studies on heavy ion fusion and high energy density physics in Japan. Nucl. Instrum. Methods Phys. Res., Sect. A 577 (2007) 21–29.10.1016/j.nima.2007.02.007
    [18]
    W.F. Henning, The future GSI facility. Nucl. Instrum. Methods Phys. Res., Sect. B 214 (2004) 211.10.1016/s0168-583x(03)01761-0
    [19]
    B.Yu. Sharkov, Overview of Russian heavy-ion inertial fusion energy program. Nucl. Instrum. Methods Phys. Res., Sect. A 577 (2007) 14–20.10.1016/j.nima.2007.02.006
    [20]
    M. Roth, T.E. Cowan, M.H. Key, S.P. Hatchett, C. Brown, et al., Fast ignition by intense laser-accelerated proton beams. Phys. Rev. Lett. 86 (2001) 436.10.1103/physrevlett.86.436
    [21]
    H. Qin, R.C. Davidson, B.G. Logan, Centroid and envelope dynamics of high-intensity charged-particle beams in an external focusing lattice and oscillating wobbler. Phys. Rev. Lett. 104 (2010) 254801.10.1103/physrevlett.104.254801
    [22]
    N.A. Tahir, Th. Stöhlker, A. Shutov, I.V. Lomonosov, V.E. Fortov, et al., Ultrahigh compression of water using intense heavy ion beams: laboratory planetary physics. New J. Phys. 12 (2010) 073022.10.1088/1367-2630/12/7/073022
    [23]
    F. Genco, A. Hassanein, Particle-in-cell methods in predicting materials behavior during high power deposition. Laser Part. Beams 32 (2014) 217.10.1017/s026303461400007x
    [24]
    Y.T. Zhao, Z.H. Hu, R. Cheng, Y.Y. Wang, H.B. Peng, et al., Trends in heavy ion interaction with plasma. Laser Part. Beams 30 (2012) 679–706.10.1017/s0263034612000626
    [25]
    X.W. Ma, W.Q. Wen, S.F. Zhang, D.Y. Yu, R. Cheng, et al., HIAF: New opportunities for atomic physics with highly charged heavy ions. Nucl. Instrum. Methods Phys. Res., Sect. B 408 (2017) 169.10.1016/j.nimb.2017.03.129
    [26]
    J.C. Yang, J.W. Xia, G.Q. Xiao, H.S. Xu, H.W. Zhao, et al., High intensity heavy ion accelerator facility (HIAF) in China. Nucl. Instrum. Methods Phys. Res., Sect. B 317 (2013) 263.10.1016/j.nimb.2013.08.046
    [27]
    N.A. Tahira, A. Adoninb, C. Deutschc, V.E. Fortovd, N. Grandjouane, et al., Studies of heavy ion-induced high-energy density states in matter at the GSI Darmstadt SIS-18 and future FAIR facility. Nucl. Instrum. Methods Phys. Res., Sect. A 544 (2005) 16–26.10.1016/j.nima.2005.01.178
    [28]
    V.E. Fortov, B. Goel, C.-D. Munz, A.L. Ni, A. Shutov, et al., Numerical simulation of nonstationary fronts and interfaces by the Godunov method in moving grids. Nucl. Sci. Eng. 123 (1996) 169.10.13182/nse96-a24181
    [29]
    L.N. Sheng, Y.T. Zhao, G.J. Yang, T. Wei, X.G. Jiang, et al., Heavy-ion radiography facility at the institute of modern physics. Laser Part. Beams 32 (2014) 651.10.1017/s0263034614000676
    [30]
    N.S.P. King, E. Ables, Ken Adams, K.R. Alrick, J.F. Amann, An 800-MeV proton radiography facility for dynamic experiments. Nucl. Instrum. Methods Phys. Res., Sect. A 424 (1999) 84–91.10.1016/s0168-9002(98)01241-8
    [31]
    D. Varentsov, O. Antonov, A. Bakhmutova, A. Bogdanov, C.R. Danly, et al., Commissioning of the PRIOR Prototype, GSI Scientific Report, APPA-MML-PP-02, 2014, pp. 275–276.
    [32]
    C.K. Li, F.H. Séguin, J.R. Rygg, J.A. Frenje, M. Manuel, et al., Monoenergetic-proton-radiography measurements of implosion dynamics in direct-drive inertial-confinement fusion. Phys. Rev. Lett. 100 (2008) 225001.10.1103/physrevlett.100.225001
    [33]
    F.E. Merrill, Imaging with penetrating radiation for the study of small dynamic physical processes. Laser Part. Beams 33 (2015) 425–431.10.1017/s0263034615000282
    [34]
    F.E. Merrill, E. Campos, C. Espinoza, G. Hogan, B. Hollander, et al., Magnifying lenses for 800 MeV proton radiography. Rev. Sci. Instrum. 82 (2011) 103709.10.1063/1.3652974
    [35]
    D. Varentsov, O. Antonov, A. Bakhmutova, C.W. Barnes, A. Bogdanov, et al., Commissioning of the PRIOR proton microscope. Rev. Sci. Instrum. 87 (2016) 023303/1–023303/8.10.1063/1.4941685
    [36]
    A.V. Kantsyrev, A.A. Golubev, V. Bogdanov, V.S. Demidov, E.V. Demidova, et al., TWAC-ITEP proton microscopy facility. Instrum. Exp. Tech. 57 (2014) 1–10.10.1134/s0020441214010151
    [37]
    Yu. M. Antipov, A.G. Afonin, A.V. Vasilevskii, I.A. Gusev, V.I. Demyanchuk, et al., A radiographic facility for the 70 GeV proton accelerator of the institute for high energy physics. Instrum. Exp. Tech. 53 (2010) 319–326.10.1134/s0020441210030012
    [38]
    F. Merrill, F. Harmon, A. Hunt, F. Mariam, K. Morley, et al., Electron radiography. Nucl. Instrum. Methods Phys. Res., Sect. B 261 (2007) 382–386.10.1016/j.nimb.2007.04.127
    [39]
    F.E. Merrill, A.A. Golubev, F.G. Mariam, V.I. Turtikov, D. Varentsov, Proton microscopy at FAIR. AIP Conf. Proc. 1195 (2009) 667–670.10.1063/1.3295228
    [40]
    D. Varentsov, A. Bogdanov, V.S. Demidov, A.A. Golubev, A. Kantsyrev, et al., First biological images with high-energy proton microscopy. Phys. Med. 29 (2013) 208–213.10.1016/j.ejmp.2012.03.002
    [41]
    Y. Zhao, Z.M. Zhang, W. Gai, Y. Du, S. Cao, et al., High energy electron radiography scheme with high spatial and temporal resolution in three dimension based on a e-LINAC. Laser Part. Beams 34 (2016) 338–342.10.1017/s0263034616000124
    [42]
    Q.T. Zhao, S.C. Cao, M. Liu, X.K. Sheng, Y.R. Wang, et al., High energy electron radiography system design and simulation study of beam angle-position correlation and aperture effect on the images. Nucl. Instrum. Methods Phys. Res., Sect. A 832 (2016) 144–151.10.1016/j.nima.2016.06.103
    [43]
    P.A. Ni, M.I. Kulish, V. Mintsev, D.N. Nikolaev, V.Ya. Ternovoi, et al., Temperature measurement of warm-dense-matter generated by intense heavy-ion beams. Laser Part. Beams 26 (2008) 583–589.10.1017/s0263034608000645
    [44]
    J.C. Deng, Y.T. Zhao, R. Cheng, X.M. Zhou, H.B. Peng, et al., Investigation on the energy loss in low energy protons interacting with hydrogen plasma. Acta Phys. Sin. 64 (2015) 145202.
    [45]
    A.B. Zylstra, J.A. Frenje, P.E. Grabowski, C.K. Li, G.W. Collins, et al., Measurement of charged-particle stopping in warm dense plasma. Phys. Rev. Lett. 114 (2015) 215002.10.1103/physrevlett.114.215002
    [46]
    D. Gericke, M. Schlanges, Beam-plasma coupling effects on the stopping power of dense plasmas. Phys. Rev. E 60 (1999) 904.10.1103/physreve.60.904
    [47]
    G. Zwicknagel, C. Toepffer, P.-G. Reinhard, Stopping power in highly correlated plasmas. Phys. Rep. 309 (1999) 117.10.1016/s0370-1573(98)00056-8
    [48]
    D. Varentsov, Energy Loss Dynamics of Intense Heavy Ion Beams Interacting with Dense Matter Ph.D. thesis. Technische Universität Darmstadt, 2002.
    [49]
    Y. Lei, Y.T. Zhao, R. Cheng, X.M. Zhou, Y.B. Sun, et al., Fluorescence emission from CsI(Tl) crystal induced by high-energy carbon ions. Opt. Mater. 35 (2013) 1179–1183.10.1016/j.optmat.2013.01.010
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article Metrics

    Article views (90) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return