Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 2 Issue 6
Nov.  2017
Turn off MathJax
Article Contents
Jiao X.J., Shaw J.M., Wang T., Wang X.M., Tsai H., Poth P., Pomerantz I., Labun L.A., Toncian T., Downer M.C., Hegelich B.M.. A tabletop, ultrashort pulse photoneutron source driven by electrons from laser wakefield acceleration[J]. Matter and Radiation at Extremes, 2017, 2(6). doi: 10.1016/j.mre.2017.10.003
Citation: Jiao X.J., Shaw J.M., Wang T., Wang X.M., Tsai H., Poth P., Pomerantz I., Labun L.A., Toncian T., Downer M.C., Hegelich B.M.. A tabletop, ultrashort pulse photoneutron source driven by electrons from laser wakefield acceleration[J]. Matter and Radiation at Extremes, 2017, 2(6). doi: 10.1016/j.mre.2017.10.003

A tabletop, ultrashort pulse photoneutron source driven by electrons from laser wakefield acceleration

doi: 10.1016/j.mre.2017.10.003
More Information
  • Corresponding author: *Corresponding author. E-mail address: jiao@utexas.edu (X.J. Jiao).
  • Received Date: 2017-07-06
  • Accepted Date: 2017-10-26
  • Available Online: 2021-12-07
  • Publish Date: 2017-11-15
  • Relativistic electron beams driven by laser wakefield acceleration were utilized to produce ultrashort neutron sources. The experiment was carried out on the 38 fs, ∼0.5 J, 800 nm Ti:Sapphire laser in the 10 TW UT3 laser lab at University of Texas at Austin. The target gas was a high density pulsed gas jet composed of 90% He and 10% N2. The laser pulse with a peak intensity of 1.5 × 1018 W/cm2 interacted with the target to create a cylindrical plasma channel of 60 μm radius (FWHM) and 1.5 mm length (FWHM). Electron beams of ∼80 pC with the Gaussian energy distribution centered at 37 MeV and a width of 30 MeV (FWHM) were produced via laser wakefield acceleration. Neutron fluences of ∼2.4 × 106 per shot with hundreds of ps temporal length were generated through bremsstrahlung and subsequent photoneutron reactions in a 26.6 mm thick tungsten converter. Results were compared with those of simulations using EPOCH and GEANT4, showing agreement in electron spectrum, neutron fluence, neutron angular distribution and conversion rate.
  • loading
  • [1]
    Taylor, A., Dunne, M., Bennington, S., Ansell, S., Gardner, I., et al., 2007. A Route to the brightest possible neutron source? Science 315, 1092–1095.10.1126/science.1127185
    [2]
    Bilheux, H.Z., McGreevy, R., Anderson, I.S. (Eds.), 2009. Neutron Imaging and Applications. Springer, US, Boston, MA http://dx.doi.org/10.1007/978-0-387-78693-3.
    [3]
    Ditmire, T., Zweiback, J., Yanovsky, V.P., Cowan, T.E., Hays, G., et al., 1999. Nuclear fusion from explosions of femtosecond laser-heated deuterium clusters, Nature 398, 489–492.10.1038/19037
    [4]
    Albert, F., Thomas, A.G.R., Mangles, S.P.D., Banerjee, S., Corde, S., et al., 2014. Laser wakefield accelerator based light sources: potential applications and requirements, Plasma Phys. Controlled Fusion 56, 084015.10.1088/0741-3335/56/8/084015
    [5]
    Albert, F., Thomas, A.G.R., 2016. Applications of laser wakefield accelerator-based light sources, Plasma Phys. Controlled Fusion 58, 103001.10.1088/0741-3335/58/10/103001
    [6]
    Macchi, A., Borghesi, M., Passoni, M., 2013. Ion acceleration by superintense laser-plasma interaction, Rev. Mod. Phys. 85, 751–793.10.1103/revmodphys.85.751
    [7]
    Esarey, E., Schroeder, C.B., Leemans, W.P., 2009. Physics of laser-driven plasma-based electron accelerators, Rev. Mod. Phys. 81, 1229–1285.10.1103/revmodphys.81.1229
    [8]
    Tsai, H.-E., Wang, X., Shaw, J.M., Li, Z., Arefiev, A.V., et al., 2015. Compact tunable Compton X-ray source from laser-plasma accelerator and plasma mirror, Phys. Plasmas 22, 023106.10.1063/1.4907655
    [9]
    Pomerantz, I., McCary, E., Meadows, A.R., Arefiev, A., Bernstein, A.C., et al., 2014. Ultrashort pulsed neutron source, Phys. Rev. Lett. 113 184801.10.1103/physrevlett.113.184801
    [10]
    Mor, I., Vartsky, D., Bar, D., Feldman, G., Goldberg, M.B., et al., 2009. High spatial resolution fast-neutron imaging detectors for Pulsed Fast-Neutron Transmission Spectroscopy, J. Instrum. 4 P05016.10.1088/1748-0221/4/05/p05016
    [11]
    Guler, N., Volegov, P., Favalli, A., Merrill, F.E., Falk, K., et al., 2016. Neutron imaging with the short-pulse laser driven neutron source at the Trident laser facility, J. Appl. Phys. 120, 154901.10.1063/1.4964248
    [12]
    Roth, M., Jung, D., Falk, K., Guler, N., Deppert, O., et al., 2013. Bright laser-driven neutron source based on the relativistic transparency of solids, Phys. Rev. Lett. 110 044802.10.1103/physrevlett.110.044802
    [13]
    Roth, M., Jung, D., Falk, K., Guler, N., Deppert, O., et al., 2016. A bright neutron source driven by relativistic transparency of solids, J. Phys. Conf. Ser. 688, 012094.10.1088/1742-6596/688/1/012094
    [14]
    Lancaster, K.L., Karsch, S., Habara, H., Beg, F.N., Clark, E.L., et al., 2004. Characterization of 7Li(p,n) 7Be neutron yields from laser produced ion beams for fast neutron radiography, Phys. Plasmas 11, 3404–3408.10.1063/1.1756911.
    [15]
    Jung, D., Falk, K., Guler, N., Deppert, O., Devlin, M., et al., 2013. Characterization of a novel, short pulse laser-driven neutron source, Phys. Plasmas 20, 056706.10.1063/1.4804640
    [16]
    Zulick, C., Dollar, F., Chvykov, V., Davis, J., Kalinchenko, G., et al., 2013. Energetic neutron beams generated from femtosecond laser plasma interactions, Appl. Phys. Lett. 102, 124101.10.1063/1.4795723
    [17]
    Bang, W., Barbui, M., Bonasera, A., Quevedo, H.J., Dyer, G., et al., 2013. Experimental study of fusion neutron and proton yields produced by petawatt-laser-irradiated D 2-3 He or CD 4-3 He clustering gases, Phys. Rev. E 8 033108.10.1103/physreve.88.033108
    [18]
    Disdier, L., Garçonnet, J.-P., Malka, G., Miquel, J.-L., 1999. Fast neutron emission from a high-energy ion beam produced by a high-intensity subpicosecond laser pulse, Phys. Rev. Lett. 82, 1454–1457.10.1103/physrevlett.82.1454
    [19]
    Storm, M., Jiang, S., Wertepny, D., Orban, C., Morrison, J., et al., 2013. Fast neutron production from lithium converters and laser driven protons, Phys. Plasmas 20, 053106.10.1063/1.4803648
    [20]
    Petrov, G.M., Higginson, D.P., Davis, J., Petrova, T.B., McNaney, J.M., et al., 2012. Generation of high-energy (>15 MeV) neutrons using short pulse high intensity lasers, Phys. Plasmas 19, 093106.10.1063/1.4751460
    [21]
    Higginson, D.P., McNaney, J.M., Swift, D.C., Bartal, T., Hey, D.S., et al., 2010. Laser generated neutron source for neutron resonance spectroscopy, Phys. Plasmas 17, 100701.10.1063/1.3484218
    [22]
    Belyaev, V.S., Vinogradov, V.I., Matafonov, A.P., Krainov, V.P., Lisitsa, V.S., et al., 2006. Neutron production in picosecond laser-generated plasma on a be target, Phys. At. Nucl. 69, 919–923.10.1134/s1063778806060019
    [23]
    Ellison, C.L., Fuchs, J., 2010. Optimizing laser-accelerated ion beams for a collimated neutron source, Phys. Plasmas 17, 113105.10.1063/1.3497011
    [24]
    Higginson, D.P., McNaney, J.M., Swift, D.C., Petrov, G.M., Davis, J., et al., 2011. Production of neutrons up to 18 MeV in high-intensity, short-pulse laser matter interactions, Phys. Plasmas 18, 100703.10.1063/1.3654040
    [25]
    Karsch, S., Düsterer, S., Schwoerer, H., Ewald, F., Habs, D., et al., 2003. High-intensity laser induced ion acceleration from heavy-water droplets, Phys. Rev. Lett. 91 015001.10.1103/physrevlett.91.015001
    [26]
    Wang, X., Zgadzaj, R., Fazel, N., Li, Z., Yi, S.A., et al., 2013. Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV, Nat. Commun. 4.10.1038/ncomms2988
    [27]
    Reed, S.A., Chvykov, V., Kalintchenko, G., Matsuoka, T., Yanovsky, V., et al., 2007. Efficient initiation of photonuclear reactions using quasimonoenergetic electron beams from laser wakefield acceleration, J. Appl. Phys. 102, 073103.10.1063/1.2787159
    [28]
    Gupta, D.N., Suk, H., 2007. Energetic electron beam generation by laser-plasma interaction and its application for neutron production, J. Appl. Phys. 101, 114908.10.1063/1.2738377
    [29]
    Leemans, W.P., Rodgers, D., Catravas, P.E., Geddes, C.G.R., Fubiani, G., et al., 2001. Gamma-neutron activation experiments using laser wakefield accelerators, Phys. Plasmas 8, 2510–2516.10.1063/1.1352617
    [30]
    Pomerantz, I., McCary, E., Meadows, A.R., Arefiev, A., Bernstein, A.C., et al., 2015. In: Ledingham, K.W.D., Spohr, K., McKenna, P., Bolton, P.R., Esarey, E., et al. (Eds.), Laser Generation of Ultra-short Neutron Bursts from High Atomic Number Converters, p. 95140Q. http://dx.doi.org/10.1117/12.2181494.
    [31]
    Buckner, M.A., 1993. Improving Neutron Dosimetry Using Bubble Detector Technology, Oak Ridge National Lab., TN (United States).
    [32]
    Arber, T.D., Bennett, K., Brady, C.S., Lawrence-Douglas, A., Ramsay, M.G., et al., 2015. Contemporary particle-in-cell approach to laser-plasma modelling, Plasma Phys. Controlled Fusion 57, 113001.10.1088/0741-3335/57/11/113001
    [33]
    Pukhov, A., Meyer-ter-Vehn, J., 2002. Laser wake field acceleration: the highly non-linear broken-wave regime, Appl. Phys. B Lasers Opt. 74, 355–361.10.1007/s003400200795
    [34]
    Allison, J., Amako, K., Apostolakis, J., Araujo, H., Dubois, P.A., et al., 2006. Geant4 developments and applications, IEEE Trans. Nucl. Sci. 53, 270–278.10.1109/TNS, 2006.869826.
    [35]
    Sarenac, D., Huber, M.G., Heacock, B., Arif, M., Clark, C.W., et al., 2016. Holography with a neutron interferometer, Opt. Express 24, 22528–22535.10.1364/OE.24.022528.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (80) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return