Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 2 Issue 6
Nov.  2017
Turn off MathJax
Article Contents
Han Xiaotao, Peng Tao, Ding Hongfa, Ding Tonghai, Zhu Zengwei, Xia Zhengcai, Wang Junfeng, Han Junbo, Ouyang Zhongwen, Wang Zhenxing, Han Yibo, Xiao Houxiu, Cao Quanliang, Lv Yiliang, Pan Yuan, Li Liang. The pulsed high magnetic field facility and scientific research at Wuhan National High Magnetic Field Center[J]. Matter and Radiation at Extremes, 2017, 2(6). doi: 10.1016/j.mre.2017.10.002
Citation: Han Xiaotao, Peng Tao, Ding Hongfa, Ding Tonghai, Zhu Zengwei, Xia Zhengcai, Wang Junfeng, Han Junbo, Ouyang Zhongwen, Wang Zhenxing, Han Yibo, Xiao Houxiu, Cao Quanliang, Lv Yiliang, Pan Yuan, Li Liang. The pulsed high magnetic field facility and scientific research at Wuhan National High Magnetic Field Center[J]. Matter and Radiation at Extremes, 2017, 2(6). doi: 10.1016/j.mre.2017.10.002

The pulsed high magnetic field facility and scientific research at Wuhan National High Magnetic Field Center

doi: 10.1016/j.mre.2017.10.002
More Information
  • Corresponding author: *Corresponding author. E-mail address: liangli44@mail.hust.edu.cn (L. Li).
  • Received Date: 2017-07-21
  • Accepted Date: 2017-10-19
  • Publish Date: 2017-11-15
  • Wuhan National High Magnetic Field Center (WHMFC) at Huazhong University of Science and Technology is one of the top-class research centers in the world, which can offer pulsed fields up to 90.6 T with different field waveforms for scientific research and has passed the final evaluation of the Chinese government in 2014. This paper will give a brief introduction of the facility and the development status of pulsed magnetic fields research at WHMFC. In addition, it will describe the application development of pulsed magnetic fields in both scientific and industrial research.
  • loading
  • [1]
    Herlach, F., 2003. High Magnetic Fields: Science and Technology. World Scientific.
    [2]
    Nguyen, D.N., Michel, J., Mielke, C.H., 2016. Status and development of pulsed magnets at the NHMFL pulsed field facility. IEEE Trans. Appl. Supercond. 26 (4), 4300905.10.1109/tasc.2016.2515982
    [3]
    Zherlitsyn, S., Wustmann, B., Herrmannsdörfer, T., Wosnitza, J., 2013. Magnet-technology development at the Dresden High Magnetic Field Laboratory. J. Low Temp. Phys. 170 (5), 447–451.10.1007/s10909-012-0764-7
    [4]
    Watson, M.D., Yamashita, T., Kasahara, S., Knafo, W., Nardone, M., et al., 2015. Dichotomy between the hole and electron behavior in multiband superconductor FeSe probed by ultrahigh magnetic fields. Phys. Rev. Lett. 115 (2), 219902.10.1103/physrevlett.115.219902
    [5]
    Li, L., Peng, T., Ding, H.F., Han, X.T., Xia, Z.C., et al., 2010. Progress in the development of the Wuhan high magnetic field center. J. Low Temp. Phys. 159 (1–2), 374–380.10.1007/s10909-009-0064-z
    [6]
    Peng, T., Sun, Q., Zhao, J., Jiang, F., Li, L., et al., 2013. Development of fast cooling pulsed magnets at the Wuhan National High Magnetic Field Center. Rev. Sci. Instrum. 84 (12), 125112.10.1063/1.4849195
    [7]
    Li, L., Lv, Y.L., Ding, H.F., Ding, T.H., Han, X.T., et al., 2014. Short and long pulse high magnetic field facility at the Wuhan National High Magnetic Field Center. IEEE Trans. Appl. Supercond. 24 (3), 1.10.1109/tasc.2013.2287401
    [8]
    Peng, T., Jiang, F., Sun, Q.Q., Xu, Q., Xiao, H.X., et al., 2014. Design and test of a 90-T nondestructive magnet at the Wuhan National High Magnetic Field Center. IEEE Trans. Appl. Supercond. 24 (3), 1.10.1109/tasc.2013.2284273
    [9]
    Peng, T., Jiang, F., Sun, Q.Q., Pan, Y., Herlach, F., et al., 2016. Concept design of 100-T pulsed magnet at the Wuhan National High Magnetic Field Center. IEEE Trans. Appl. Supercond. 26 (4), 1.10.1109/tasc.2015.2513366
    [10]
    Ding, H., Hu, J., Liu, W., Xu, Y., Jiang, C., et al., 2012. Design of a 135 MW power supply for a 50 T pulsed magnet. IEEE Trans. Appl. Supercond. 22 (3), 5400504.10.1109/tasc.2012.2183630
    [11]
    Lv, Y.L., Peng, T., Wang, G.B., Ding, T.H., Han, X.T., et al., 2013. Magnet design and analysis of a 40 Tesla long pulse system energized by a battery bank. J. Low Temp. Phys. 170 (5–6), 475–480.10.1007/s10909-012-0670-z
    [12]
    Xiao, H., Ma, Y., Lv, Y., Ding, T., Zhang, S., et al., 2014. Development of a high-stability flat-top pulsed magnetic field facility. IEEE Trans. Power Electron. 29 (9), 4532–4537.10.1109/tpel.2013.2285125
    [13]
    Jiang, F., Peng, T., Xiao, H., Zhao, J., Pan, Y., et al., 2014. Design and test of a flat-top magnetic field system driven by capacitor banks. Rev. Sci. Instrum. 85 (4), 045106.10.1063/1.4870410
    [14]
    Cao, J., Liang, S., Zhang, C., Liu, Y., Huang, J., et al., 2015. Landau level splitting in Cd3As2 under high magnetic fields. Nat. Commun. 6, 7779.10.1038/ncomms8779
    [15]
    Liu, Y., Yuan, X., Zhang, C., Jin, Z., Narayan, A., et al., 2016. Zeeman splitting and dynamical mass generation in Dirac semimetal ZrTe5. Nat. Commun. 7, 12516.10.1038/ncomms12516
    [16]
    Zhao, Y., Liu, H., Zhang, C., Wang, H., Wang, J., et al., 2015. Anisotropic Fermi surface and quantum limit transport in high mobility three-dimensional Dirac semimetal Cd3As2. Phys. Rev. X 5 (3), 031037.10.1103/physrevx.5.031037
    [17]
    Kim, H.J., Kim, K.S., Wang, J.F., Sasaki, M., Satoh, N., et al., 2013. Dirac versus Weyl fermions in topological insulators: Adler-Bell-Jackiw anomaly in transport phenomena. Phys. Rev. Lett. 111 (24), 246603.10.1103/physrevlett.111.246603
    [18]
    Xu, X., Jiao, W.H., Zhou, N., Guo, Y., Li, Y.K., et al., 2015. Quasi-linear magnetoresistance and the violation of Kohler's rule in the quasi-one-dimensional Ta4Pd3Te16 superconductor. J. Phys. Condens. Matter 27 (33), 335701.10.1088/0953-8984/27/33/335701
    [19]
    Zhu, Z.W., Wang, J.H., Zuo, H.K., Fauqué, B., McDonald, R.D., et al., 2017. Emptying Dirac valleys in bismuth using high magnetic fields. Nat. Commun. 8, 15297.10.1038/ncomms15297
    [20]
    Zhang, C.L., Xu, S.Y., Wang, C.M., Lin, Z., Du, Z.Z., et al., 2017. Magnetic-tunnelling-induced Weyl node annihilation in TaP. Nat. Phys. 13, 979.10.1038/nphys4183.
    [21]
    Shang, C., Xia, Z.C., Wei, M., Jin, Z., Chen, B.R., et al., 2016. Al3+ doping effects and high-field phase diagram of La0.5Sr0.5Mn1−xAlxO3. J. Phys. D Appl. Phys. 49 (3), 035001.10.1088/0022-3727/49/3/035001
    [22]
    Zuo, H.K., Shi, L.R., Xia, Z.C., Huang, J.W., Chen, B.R., et al., 2015. The magnetic anisotropy and complete phase diagram of CuFeO2 measured in a pulsed high magnetic field up to 75T. Chin. Phys. Lett. 32 (4), 047502.10.1088/0256-307x/32/4/047502
    [23]
    Ruan, M.Y., Ouyang, Z.W., Sheng, S.S., Shi, X.M., Guo, Y.M., et al., 2014. High-field magnetization study of spin-chain compounds Ca3Co2−xMnxO6. J. Magnetism Magnetic Mater. 361, 157–160.10.1016/j.jmmm.2014.02.088
    [24]
    Chen, B.R., Xia, Z.C., Huang, J.W., Jin, Z., Zuo, H.K., et al., 2015. Engineering of ion-doping on the ground states and Bose-Einstein condensation of Sr3Cr2O8. Mater. Chem. Phys. 167, 278–285.10.1016/j.matchemphys.2015.10.044
    [25]
    Chen, C., Han, Y.B., Wang, X.J., Chen, P.P., Han, J.B., et al., 2017. Low temperature photo-induced carrier dynamics in the GaAs0.985N0.015 alloy. J. Alloys Compd. 699, 297–302.10.1016/j.jallcom.2017.01.012
    [26]
    Zhang, J., Wang, X., Zhong, Z., Ma, Z., Wang, S., et al., 2015. Magnetic field induced extraordinary photoluminescence enhancement in Er3+:YVO4 single crystal. J. Appl. Phys. 118 (8), 083101.10.1063/1.4928853
    [27]
    Han, Y., Ma, Z., Zhang, J., Wang, J., Du, G., et al., 2015. Hidden local symmetry of Eu3+ in xenotime-like crystals revealed by high magnetic fields. J. Appl. Phys. 117 (5), 055902.10.1063/1.4906856
    [28]
    Du, G., Liu, P., Guo, W., Han, Y., Zhang, J., et al., 2013. The influence of high magnetic field on electric-dipole emission spectra of Eu3+ in different single crystals. J. Mater. Chem. C 1 (45), 7608–7613.10.1039/c3tc31385a
    [29]
    Wang, S.L., Li, L., Ouyang, Z.W., Xia, Z.C., Xia, N.M., et al., 2012. Development of high-magnetic-field, high-frequency electronic spin resonance system. Acta Phys. Sin. 61 (10), 107601.
    [30]
    Ruan, M.Y., Ouyang, Z.W., Guo, Y.M., Cheng, J.J., Sun, Y.C., et al., 2014. Disappearance of Ising nature in Ca3ZnMnO6 studied by high-field ESR. J. Phys. Condens. Matter 26 (23), 236001.10.1088/0953-8984/26/23/236001
    [31]
    Deng, Y.F., Han, T., Wang, Z., Ouyang, Z., Yin, B., et al., 2015. Uniaxial magnetic anisotropy of square-planar chromium (II) complexes revealed by magnetic and HF-EPR studies. Chem. Commun. 51 (100), 17688–17691.10.1039/c5cc07025b
    [32]
    Psyk, V., Risch, D., Kinsey, B.L., Tekkaya, A.E., Kleiner, M., 2011. Electromagnetic forming—a review. J. Mater. Process. Technol. 211 (5), 787–829.10.1016/j.jmatprotec.2010.12.012
    [33]
    Li, L., Han, X., Peng, T., Ding, H., Ding, T., et al., 2012. Space-time-controlled multi-stage pulsed magnetic field forming and manufacturing technology. In: The 5th International Conference on High Speed Forming. Dortmund, Germany, pp. 53–58.
    [34]
    Lai, Z., Han, X., Cao, Q., Qiu, L., Zhou, Z., et al., 2014. The electromagnetic flanging of a large-scale sheet workpiece. IEEE Trans. Appl. Supercond. 24 (3), 0500805.
    [35]
    Xiong, Q., Cao, Q., Han, X., Lai, Z., Deng, F., et al., 2016. Axially movable electromagnetic forming system for large-scale metallic sheet. IEEE Trans. Appl. Supercond. 26 (4), 1.10.1109/tasc.2016.2542480
    [36]
    Lai, Z., Cao, Q., Zhang, B., Han, X., Zhou, Z., et al., 2015. Radial Lorentz force augmented deep drawing for large drawing ratio using a novel dual-coil electromagnetic forming system. J. Mater. Process. Technol. 222, 13–20.10.1016/j.jmatprotec.2015.02.029
    [37]
    Zhang, X., Cao, Q., Han, X., Chen, Q., Lai, Z., et al., 2016. Application of triple-coil system for improving deformation depth of tube in electromagnetic forming. IEEE Trans. Appl. Supercond. 26 (4), 3701204.10.1109/tasc.2016.2542482
    [38]
    Hsieh, M.F., Lien, Y.M., Dorrell, D.G., 2011. Post-assembly magnetization of rare-earth fractional-slot surface permanent-magnet machines using a two-shot method. IEEE Trans. Industry Appl. 47 (6), 2478–2486.10.1109/tia.2011.2168933
    [39]
    Lv, Y., Wang, G., Li, L., 2015. Post-assembly magnetization of a 100 kW high speed permanent magnet rotor. Rev. Sci. Instrum. 86 (3), 034706.10.1063/1.4914586
    [40]
    Cao, Q., Han, X., Li, L., 2014. Configurations and control of magnetic fields for manipulating magnetic particles in microfluidic applications: magnet systems and manipulation mechanisms. Lab Chip 14 (15), 2762–2777.10.1039/c4lc00367e
    [41]
    Polyak, B., Friedman, G., 2009. Magnetic targeting for site-specific drug delivery: applications and clinical potential. Expert Opin. Drug Deliv. 6 (1), 53–70.10.1517/17425240802662795
    [42]
    Plank, C., Zelphati, O., Mykhaylyk, O., 2011. Magnetically enhanced nucleic acid delivery, Ten years of magnetofection—progress and prospects. Adv. Drug Deliv. Rev. 63 (14), 1300–1331.10.1016/j.addr.2011.08.002
    [43]
    Liang, L., Zhang, C., Xuan, X., 2013. Enhanced separation of magnetic and diamagnetic particles in a dilute ferrofluid. Appl. Phys. Lett. 102 (23), 234101.10.1063/1.4810874
    [44]
    Cao, Q., Han, X., Chun, L., Liu, J., Li, L., 2016. Note: magnetic targeting for enhancement of the activation efficiency of G protein-coupled receptor with a two-pair coil system. Rev. Sci. Instrum. 87 (1), 016103.10.1063/1.4939732
    [45]
    Han, X., Feng, Y., Cao, Q., Li, L., 2015. Three-dimensional analysis and enhancement of continuous magnetic separation of particles in microfluidics. Microfluidics Nanofluidics 18 (5–6), 1209–1220.10.1007/s10404-014-1516-6
    [46]
    Cao, Q., Han, X., Li, L., 2015. An active microfluidic mixer utilizing a hybrid gradient magnetic field. Int. J. Appl. Electromagn. Mech. 47 (3), 583–592.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views (118) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return