Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 3 Issue 1
Jan.  2018
Turn off MathJax
Article Contents
Lu Liang, Ma Wei, Li Chenxing, He Tao, Yang Lei, Sun Liepeng, Xu Xianbo, Wang Wenbing, Shi Longbo. New developments of HIF injector[J]. Matter and Radiation at Extremes, 2018, 3(1). doi: 10.1016/j.mre.2017.09.003
Citation: Lu Liang, Ma Wei, Li Chenxing, He Tao, Yang Lei, Sun Liepeng, Xu Xianbo, Wang Wenbing, Shi Longbo. New developments of HIF injector[J]. Matter and Radiation at Extremes, 2018, 3(1). doi: 10.1016/j.mre.2017.09.003

New developments of HIF injector

doi: 10.1016/j.mre.2017.09.003
More Information
  • Corresponding author: *Corresponding author. LINAC Center, 509 Nanchang Rd., Lanzhou, Gansu 730000, China. E-mail address: luliang@impcas.ac.cn (L. Lu).
  • Received Date: 2017-04-05
  • Accepted Date: 2017-09-25
  • Publish Date: 2018-01-15
  • The ultra-high intensity heavy-ion beam is highly pursued for heavy-ion researches and applications. However, it is limited by heavy-ion production of ion source and space-charge-effect in the low energy region. The Heavy-ion Inertial Fusion (HIF) facilities were proposed in 1970s. The HIF injectors have large cavity number and long total length, e.g., there are 27 injectors in HIDIF and HIBLIC is 30 km in length, and the corresponding HIF facilities are too large and too expensive to be constructed. Recently, ion acceleration technologies have been developing rapidly, especially in the low energy region, where the acceleration of high intensity heavy-ions is realized. Meanwhile, superconducting (SC) acceleration matures and increases the acceleration gradient in medium and high energy regions. The length of HIF injectors can be shortened to a buildable length of 2.5 km. This paper will present a review of a renewed HIF injector, which adopts multi-beam linac-based cavities.
  • loading
  • [1]
    B. Badger, I. Hofmann, K. O'Brien, F. Arendt, HIBALL – a conceptual heavy-ion Beam Driven Fusion Reactor Study Volume 1. Institut für Neutronenphysik Reaktortechnik, Kernforschungszentrum Karlsruhe, Rep. KfK 3202 (1981).
    [2]
    I. Hofmann, HIDIF-an approach to high repetition rate inertial fusion with heavy-ions. Nucl. Instrum. Methods Phys. Res., Sect. A 415 (1998) 11.10.1016/s0168-9002(98)00512-9
    [3]
    A. Schempp, The injector for the HIDIF driver linac. Nucl. Instrum. Methods Phys. Res., Sect. A 415 (1998) 209.10.1016/s0168-9002(98)00386-6
    [4]
    Y. Fujiie, S. Hayakawa, T. Hattori, Y. Hirao, T. Katayama, et al., Research Report of Institute of Plasma Physics. Nagoya University. HIBLIC-heavy-ion fusion reactor, Rep. IPPJ-663 (1984).
    [5]
    https://www.llnl.gov/.
    [6]
    L. Lu, T. Hattori, N. Hayashizaki, T. Ishibashi, M. Okamura, et al., Development of high intensity linear accelerator for heavy-ion inertial fusion driver. Nucl. Instrum. Methods Phys. Res., Sect. A 729 (2013) 133–137.10.1016/j.nima.2013.06.072
    [7]
    L.M. Young, Operations of the LEDA resonantly coupled RFQ. In: Proceedings of the 2001 Particle Accelerator Conference, Chicago, USA (April 1980), 2001, pp. 309–313.
    [8]
    Wei Ma, Liang Lu, Xianbo Xu, Liepeng Sun, Zhouli Zhang, et al., Design of an 81.25 MHz continuous-wave radio-frequency quadrupole accelerator for low energy accelerator facility. Nucl. Instrum. Methods Phys. Res., Sect. A 847 (2017) 130–135.10.1016/j.nima.2016.11.056
    [9]
    M. Okamura, T. Takeuchi, T. Katayama, R.A. Jameson, Direct injection scheme for RFQ linac. In: Proceedings of LINAC 2002, Gyeongju, Korea, 2002, pp. 91–93.
    [10]
    M. Okamura, R.A. Jameson, J. Takano, K. Yamamoto, H. Kashiwagi, et al., High current RFQ using laser ion source. In: Proceedings of LINAC 2004, Lübeck, Germany, 2004, pp. 315–317.
    [11]
    H. Kashiwagi, T. Hattori, N. Hayashizaki, K. Yamamato, Y. Takahashi, et al., Nd-YAG laser ion source for direct injection scheme. Rev. Sci. Instrum. 75 (1569) (2004) 1569–1571.10.1063/1.1691513
    [12]
    T. Ishibashi, N. Hayashizaki, T. Hattori, Two-beam interdigital-H-type radio frequency quadrupole linac with direct plasma injection for high intensity heavy-ion acceleration. Phys. Rev. Spec. Top.--Accel. Beams 14 (2011) 060101.10.1103/physrevstab.14.060101
    [13]
    Liang Lu, Toshiyuki Hattori, Noriyosu Hayashizaki, CW Operation on APF-IH linac as a heavy-ion implanter. Nucl. Instrum. Methods Phys. Res., Sect. A 622 (2010) 485–491.10.1016/j.nima.2010.07.043
    [14]
    T. Hattori, K. Sasa, M. Okamura, T. Ito, H. Tomizawa, et al., Conceptual design of compact heavy-ion inertial fusion driver with an r.f. LINAC with high acceleration rate. Fusion Eng. Des. 32–33 (1996) 359–363.10.1016/s0920-3796(96)00489-9
    [15]
    X. Yin, J. Peng, K. Gong, H. Liu, Y. Xiao, et al., Design of the CSNS DTL. In: Proceedings of the Linear Accelerator Conference LINAC2010, Tsukuba, Michigan, Japan, 2010, pp. 554–556.
    [16]
    Liang Lu, T. He, L. Yang, W. Ma, L.P. Sun, et al., Research on a two-beam type drift tube linac. In: Proceedings of the 28th Linear Accelerator Conference. Michigan State University, Michigan, USA, 2016, pp. 989–991.
    [17]
    B. Yu, S. Sharkov, A. kondrashev, Matching of the Intensive Laser Ion Source to the RFQ Accelerators. In: Proceedings of EPAC96, 1996, pp. 1550–1552.
    [18]
    T. Kanesue, M. Okamura, K. Kondo, J. Tamura, H. Kashiwagi, et al., Drift distance survey in direct plasma injection scheme for high current beam production. Rev. Sci. Instrum. 81 (2010) 02B723.10.1063/1.3298845
    [19]
    G. Devanz, N. Bazin, G. Disset, H. Dzitko, P. Hardy, et al., Progress in IFMIF half wave resonators manufacturing and test preparation. In: Proceedings of the SRF2015, Whistler, BC, Canada, 2015, pp. 1191–1195.
    [20]
    P. Berrutti, T. Khabiboulline, L. Ristori, N. Solyak, V. Yakovlev, Single spoke resonator inner electrode optimization driven by reduction of multipoles. In: Proceedings of the PAC2013, Pasadena, CA, USA, 2013, pp. 835–837.
    [21]
    https://www.cst.com/products/cstmws.
    [22]
    K. Yamamoto, H. Tanaka, H. Harada, K. Sugahara, H. Inoue, et al., Experimental verification of an APF linac for a proton therapy facility. Nucl. Instrum. Methods Phys. Res., Sect. B 269 (2011), 2875–2878.10.1016/j.nimb.2011.04.046
    [23]
    L. Lu, T. Hattori, N. Hayashizaki, Design and simulation of C6+ hybrid single cavity for cancer therapy with direct plasma injection scheme. Nucl. Instrum. Methods Phys. Res., Sect. A 688 (2012) 11–21.10.1016/j.nima.2012.04.056
    [24]
    K. Saito, N. Bultman, F. Casagrande, S. Chandrasekaran, S. Chouhan, et al., SRF developments at MSU for FRIB. In: Proceedings of the 16th International Conference on RF Superconductivity, September 23-37, 2013, Paris, France, pp. 106–111.
    [25]
    F.S. He, J.P. Dai, J. Dai, X. Huang, L.H. Li, et al., Status of the superconducting cavity development at IHEP for the CADS linac. In: Proceedings of the 6th International Particle Accelerator Conference, May 3-8, 2015, Richmond, VA, USA, pp. 3824–3826.
    [26]
    L. Lu, T. Hattori, H.Y. Zhao, K. Kawasaki, L.T. Sun, et al., High power test of an injector linac for heavy-ion cancer therapy facilities. Phys. Rev. Spec. Top.--Accel. Beams 18 (2015) 111002.10.1103/physrevstab.18.111002
    [27]
    https://frib.msu.edu/.
    [28]
    J. Yang, J. Xia, G. Xiao, H. Xu, H. Zhao, et al., High intensity heavy-ion accelerator facility (HIAF) in China. Nucl. Instrum. Methods Phys. Res., Sect. A 317 (2013) 263.10.1016/j.nimb.2013.08.046
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)  / Tables(5)

    Article Metrics

    Article views (154) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return