Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 3 Issue 1
Jan.  2018
Turn off MathJax
Article Contents
Weng S.M., Sheng Z.M., Murakami M., Chen M., Liu M., Wang H.C., Yuan T., Zhang J.. Optimization of hole-boring radiation pressure acceleration of ion beams for fusion ignition[J]. Matter and Radiation at Extremes, 2018, 3(1). doi: 10.1016/j.mre.2017.09.002
Citation: Weng S.M., Sheng Z.M., Murakami M., Chen M., Liu M., Wang H.C., Yuan T., Zhang J.. Optimization of hole-boring radiation pressure acceleration of ion beams for fusion ignition[J]. Matter and Radiation at Extremes, 2018, 3(1). doi: 10.1016/j.mre.2017.09.002

Optimization of hole-boring radiation pressure acceleration of ion beams for fusion ignition

doi: 10.1016/j.mre.2017.09.002
More Information
  • Corresponding author: *Corresponding author. Key Laboratory for Laser Plasmas (MoE), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.; **Corresponding author. Key Laboratory for Laser Plasmas (MoE), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China. E-mail addresses: wengsuming@gmail.com (S.M. Weng), z.sheng@strath.ac.uk (Z.M. Sheng).
  • Received Date: 2017-04-30
  • Accepted Date: 2017-09-11
  • Publish Date: 2018-01-15
  • In contrast to ion beams produced by conventional accelerators, ion beams accelerated by ultrashort intense laser pulses have advantages of ultrashort bunch duration and ultrahigh density, which are achieved in compact size. However, it is still challenging to simultaneously enhance their quality and yield for practical applications such as fast ion ignition of inertial confinement fusion. Compared with other mechanisms of laser-driven ion acceleration, the hole-boring radiation pressure acceleration has a special advantage in generating high-fluence ion beams suitable for the creation of high energy density state of matters. In this paper, we present a review on some theoretical and numerical studies of the hole-boring radiation pressure acceleration. First we discuss the typical field structure associated with this mechanism, its intrinsic feature of oscillations, and the underling physics. Then we will review some recently proposed schemes to enhance the beam quality and the efficiency in the hole-boring radiation pressure acceleration, such as matching laser intensity profile with target density profile, and using two-ion-species targets. Based on this, we propose an integrated scheme for efficient high-quality hole-boring radiation pressure acceleration, in which the longitudinal density profile of a composite target as well as the laser transverse intensity profile are tailored according to the matching condition.
  • loading
  • [1]
    H. Daido, M. Nishiuchi, A.S. Pirozhkov, Review of laser-driven ion sources and their applications, Rep. Prog. Phys. 75 (2012) 056401.10.1088/0034-4885/75/5/056401
    [2]
    A. Macchi, M. Borghesi, M. Passoni, Ion acceleration by superintense laser-plasma interaction, Rev. Mod. Phys. 85 (2013) 751.10.1103/revmodphys.85.751
    [3]
    S. Kawata, T. Nagashima, M. Takano, T. Izumiyama, D. Kamiyama, et al., Controllability of intense-laser ion acceleration, High Power Laser Sci. Eng. 2 (2014) e4.10.1017/hpl.2014.5
    [4]
    Y.J. Gu, Z. Zhu, X.F. Li, Q. Yu, S. Huang, et al., Stable long range proton acceleration driven by intense laser pulse with underdense plasmas, Phys. Plasmas 21 (2014) 063104.10.1063/1.4882437
    [5]
    M. Borghesi, D.H. Campbell, A. Schiavi, M.G. Haines, O. Willi, et al., Electric field detection in laser-plasma interaction experiments via the proton imaging technique, Phys. Plasmas 9 (2002) 2214.10.1063/1.1459457
    [6]
    S.S. Bulanov, A. Brantov, V. Yu. Bychenkov, V. Chvykov, G. Kalinchenko, et al., Accelerating protons to therapeutic energies with ultra-intense ultra-clean and ultra-short laser pulses, Med. Phys. 35 (2008) 1770.10.1118/1.2900112
    [7]
    J.S. Loeffler, M. Durane, Charged particle therapy–optimization, challenges and future directions, Nat. Rev. Clin. Oncol. 10 (2013) 411.10.1038/nrclinonc.2013.79
    [8]
    P.K. Patel, A.J. Mackinnon, M.H. Key, T.E. Cowan, M.E. Foord, et al., Isochoric heating of solid-density matter with an ultrafast proton beam, Phys. Rev. Lett. 91 (2003) 125004.10.1103/physrevlett.91.125004
    [9]
    N.A. Tahir, C. Deutsch, V.E. Fortov, V. Gryaznov, D.H.H. Hoffmann, et al., Proposal for the study of thermophysical properties of high-energy-density matter using current and future heavy-ion accelerator facilities at GSI Darmstadt, Phys. Rev. Lett. 95 (2005) 035001.10.1103/physrevlett.95.035001
    [10]
    M. Roth, T.E. Cowan, M.H. Key, S.P. Hatchett, C.Brown, et al., Fast ignition by intense laser-accelerated proton beams, Phys. Rev. Lett. 86 (2001) 436.10.1103/physrevlett.86.436
    [11]
    M. Tabak, J. Hammer, M.E. Glinsky, W.L. Kruer, S.C. Wilks, et al., Ignition and high gain with ultrapowerful lasers, Phys. Plasmas 1 (1994) 1626.10.1063/1.870664
    [12]
    S. Pfalzner, An Introduction to Inertial Confinement Fusion, 1Taylor & Francis Group, New York, 2006.
    [13]
    J.J. Honrubia, J.C. Fernández, M. Temporal, B.M. Hegelich, J. Meyer-ter-Vehn, Fast ignition of inertial fusion targets by laser-driven carbon beams, Phys. Plasmas 16 (2009) 102701.10.1063/1.3234248
    [14]
    N.N. Naumova, T. Schlegel, V.T. Tikhonchuk, C. Labaune, I.V. Sokolov, et al., Hole boring in a DT pellet and fast-ion ignition with ultraintense laser pulses, Phys. Rev. Lett. 102 (2009) 025002.10.1103/physrevlett.102.025002
    [15]
    B.M. Hegelich, D. Jung, B.J. Albright, J.C. Fernandez, D.C. Gautier, et al., Experimental demonstration of particle energy, conversion efficiency and spectral shape required for ion-based fast ignition, Nucl. Fusion 51 (2011) 083011.10.1088/0029-5515/51/8/083011
    [16]
    S.C. Wilks, A.B. Langdon, T.E. Cowan, M. Roth, M. Singh, et al., Energetic proton generation in ultra-intense laser-solid interactions, Phys. Plasmas 8 (2001) 542.10.1063/1.1333697
    [17]
    M. Passoni, L. Bertagna, A. Zani, Target normal sheath acceleration: theory, comparison with experiments and future perspectives, New J. Phys. 12 (2010) 045012.10.1088/1367-2630/12/4/045012
    [18]
    Q.L. Dong, Z.M. Sheng, M.Y. Yu, J. Zhang, Optimization of ion acceleration in the interaction of intense femtosecond laser pulses with ultrathin foils, Phys. Rev. E 68 (2003) 026408.10.1103/physreve.68.026408
    [19]
    L. Yin, B.J. Albright, B.M. Hegelich, J.C. Fernandez, GeV laser ion acceleration from ultrathin targets: the laser break-out afterburner, Laser Part. Beams 24 (2006) 291.10.1017/s0263034606060459
    [20]
    C.A.J. Palmer, N.P. Dover, I. Pogorelsky, M. Babzien, G.I. Dudnikova, et al., Monoenergetic proton beams accelerated by a radiation pressure driven shock, Phys. Rev. Lett. 106 (2011) 014801.10.1103/physrevlett.106.014801
    [21]
    D. Haberberger, S. Tochitsky, F. Fiuza, C. Gong, R.A. Fonseca, et al., Collisionless shocks in laser-produced plasma generate monoenergetic high-energy proton beams, Nat. Phys. 8 (2012) 95.10.1038/nphys2130
    [22]
    M. Liu, S.M. Weng, Y.T. Li, D.W. Yuan, M. Chen, et al., Collisionless electrostatic shock formation and ion acceleration in intense laser interactions with near critical density plasmas, Phys. Plasmas 23 (2016) 113103.10.1063/1.4967946
    [23]
    K. Nishihara, H. Amitani, M. Murakami, S.V. Bulanov, T.Zh. Esirkepov, High energy ions generated by laser driven Coulomb explosion of cluster, Nucl. Instrum. Methods Phys. Res., Sect. A 464 (2001) 98.10.1016/s0168-9002(01)00014-6
    [24]
    M. Murakami, M. Tanaka, Generation of high-quality mega-electron volt proton beams with intense-laser-driven nanotube accelerator, Appl. Phys. Lett. 102 (2013) 163101.10.1063/1.4798594
    [25]
    T. Esirkepov, M. Borghesi, S.V. Bulanov, G. Mourou, T. Tajima, Highly efficient relativistic-ion generation in the laser-piston regime, Phys. Rev. Lett. 92 (2004) 175003.10.1103/physrevlett.92.175003
    [26]
    A.P.L. Robinson, M. Zepf, S. Kar, R.G. Evans, C. Bellei, Radiation pressure acceleration of thin foils with circularly polarized laser pulses, New. J. Phys. 10 (2008) 013021.10.1088/1367-2630/10/1/013021
    [27]
    X.Q. Yan, C. Lin, Z.M. Sheng, Z.Y. Guo, B.C. Liu, et al., Generating high-current monoenergetic proton beams by a circularly polarized laser pulse in the phase-stable acceleration regime, Phys. Rev. Lett. 100 (2008) 135003.10.1103/physrevlett.100.135003
    [28]
    B. Qiao, M. Zepf, M. Borghesi, M. Geissler, Stable GeV ion-beam acceleration from thin foils by circularly polarized laser pulses, Phys. Rev. Lett. 102 (2009) 145002.10.1103/physrevlett.102.145002
    [29]
    M. Chen, A. Pukhov, T.P. Yu, Z.M. Sheng, Enhanced collimated GeV monoenergetic ion acceleration from a shaped foil target irradiated by a circularly polarized laser pulse, Phys. Rev. Lett. 103 (2009) 024801.10.1103/physrevlett.103.024801
    [30]
    T.P. Yu, A. Pukhov, G. Shvets, M. Chen, Stable laser-driven proton beam acceleration from a two-ion-species ultrathin foil, Phys. Rev. Lett. 105 (2010) 065002.10.1103/physrevlett.105.065002
    [31]
    S.C. Wilks, W.L. Kruer, M. Tabak, A.B. Langdon, Absorption of ultra-intense laser pulses, Phys. Rev. Lett. 69 (1992) 1383.10.1103/physrevlett.69.1383
    [32]
    J. Denavit, Absorption of high-intensity subpicosecond lasers on solid density targets, Phys. Rev. Lett. 69 (1992) 3052.10.1103/physrevlett.69.3052
    [33]
    A. Macchi, F. Cattani, T.V. Liseykina, F. Cornolti, Laser acceleration of ion bunches at the front surface of overdense plasmas, Phys. Rev. Lett. 94 (2005) 165003.10.1103/physrevlett.94.165003
    [34]
    A.P.L. Robinson, P. Gibbon, M. Zepf, S. Kar, R.G. Evans, et al., Relativistically correct hole-boring and ion acceleration by circularly polarized laser pulses, Plasma Phys. Controlled Fusion 51 (2009) 024004.10.1088/0741-3335/51/2/024004
    [35]
    T. Schlegel, N. Naumova, V.T. Tikhonchuk, C. Labaune, I.V. Sokolov, et al., Relativistic laser piston model: ponderomotive ion acceleration in dense plasmas using ultraintense laser pulses, Phys. Plasmas 16 (2009) 083103.10.1063/1.3196845
    [36]
    F. Wagner, O. Deppert, C. Brabetz, P. Fiala, A. Kleinschmidt, et al., Maximum proton energy above 85 MeV from the relativistic interaction of laser pulses with micrometer thick CH2 targets, Phys. Rev. Lett. 116 (2016) 205002.10.1103/physrevlett.116.205002
    [37]
    R. Kodama, K. Takahashi, K.A. Tanaka, M. Tsukamoto, H. Hashimoto, et al., Study of laser-hole boring into overdense plasmas, Phys. Rev. Lett. 77 (1996) 4906.10.1103/physrevlett.77.4906
    [38]
    S. Atzeni, J. Meyer-ter-Vehn, The Physics of Inertial Fusion: Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter, Clarendon Press, Oxford, 2004.
    [39]
    H. Hora, J. Badziak, M.N. Read, Y.T. Li, T.J. Liang, et al., Fast ignition by laser driven particle beams of very high intensity, Phys. Plasmas 14 (2007) 072701.10.1063/1.2748389
    [40]
    S.M. Weng, M. Murakami, H. Azechi, J.W. Wang, N. Tasoko, et al., Quasi-monoenergetic ion generation by hole-boring radiation pressure acceleration in inhomogeneous plasmas using tailored laser pulses, Phys. Plasmas 21 (2014) 012705.10.1063/1.4861339
    [41]
    J.J. Honrubia, J. Fernandez, B.M. Hegelich, M. Murakami, C.D. Enriquez, Fast ignition driven by quasi-monoenergetic ions: optimal ion type and reduction of ignition energies with an ion beam array, Laser Part. Beams 32 (2014) 419.10.1017/s0263034614000305
    [42]
    J.J. Honrubia, M. Murakami, Ion beam requirements for fast ignition of inertial fusion targets, Phys. Plasmas 22 (2015) 012703.10.1063/1.4905904
    [43]
    S. Eliezer, H. Hora, Double layers in laser-produced plasmas, Phys. Rep. 172 (1989) 339.10.1016/0370-1573(89)90118-x
    [44]
    H. Hora, Laser Plasma Physics, SPIE Press, 2016.
    [45]
    S. Eliezer, N. Nissim, V. Martínez, M. José, K. Mima, et al., Double layer acceleration by laser radiation, Laser Part. Beams 32 (2014) 211–216.10.1017/s0263034613001018
    [46]
    M. Murakami, H. Nagatomo, H. Azechi, F. Ogando, M. Perlado, et al., Innovative ignition scheme for ICF-impact fast ignition, Nucl. Fusion 46 (2006) 99–103.10.1088/0029-5515/46/1/011
    [47]
    S.M. Weng, M. Liu, Z.M. Sheng, M. Murakami, M. Chen, et al., Dense blocks of energetic ions driven by multi-petawatt lasers, Sci. Rep. 6 (2016) 22150.10.1038/srep22150
    [48]
    X. Zhang, B. Shen, Z. Jin, Ji, L., Generation of plasma intrinsic oscillation at the front surface of a target irradiated by a circularly polarized laser pulse, Phys. Plasmas 16 (2009) 033102.10.1063/1.3081549
    [49]
    X. Zhang, B. Shen, X. Li, Z.Y. Jin, F.C. Wang, et al., Efficient GeV ion generation by ultraintense circularly polarized laser pulse, Phys. Plasmas 14 (2007) 123108.10.1063/1.2817087
    [50]
    S.M. Weng, P. Mulser, Z.M. Sheng, Relativistic critical density increase and relaxation and high-power pulse propagation, Phys. Plasmas 19 (2012) 022705.10.1063/1.3680638
    [51]
    S.M. Weng, M. Murakami, P. Mulser, Z.M. Sheng, Ultra-intense laser pulse propagation in plasmas: from classic hole-boring to incomplete hole-boring with relativistic transparency, New J. Phys. 14 (2012) 063026.10.1088/1367-2630/14/6/063026
    [52]
    H. Xu, W. Yu, M.Y. Yu, A.Y. Wong, Z.M. Sheng, et al., Production of high-density high-temperature plasma by collapsing small solid-density plasma shell with two ultra-intense laser pulses, Appl. Phys. Lett. 100 (2012) 144101; 10.1063/1.3697983
    [53]
    S.S. Bulanov, E. Esarey, C.B. Schroeder, S.V. Bulanov, T. Zh, Esirkepov, et al., Enhancement of maximum attainable ion energy in the radiation pressure acceleration regime using a guiding structure, Phys. Rev. Lett. 114 (2015) 105003.10.1103/physrevlett.114.105003
    [54]
    K.V. Lezhnin, F.F. Kamenets, V.S. Beskin, M. Kando, T. Zh, Esirkepov, et al., Effect of electromagnetic pulse transverse inhomogeneity on ion acceleration by radiation pressure, Phys. Plasmas 22 (2015) 033112.10.1063/1.4915136
    [55]
    A. Macchi, C. Benedetti, Ion acceleration by radiation pressure in thin and thick targets, Nucl. Instrum. Methods Phys. Res., Sect. A 620 (2010) 41.10.1016/j.nima.2010.01.057
    [56]
    S. Kar, K.F. Kakolee, M. Cerchez, D. Doria, A. Macchi, et al., Experimental investigation of hole boring and light sail regimes of RPA by varying laser and target parameters, Phys. Rev. Lett. 109 (2012) 185006.10.1103/physrevlett.109.185006
    [57]
    Y.Q. Cui, W.M. Wang, Z.M. Sheng, Y.T. Li, J. Zhang, Quasimonoenergetic proton bunches generation from doped foil targets irradiated by intense lasers, Phys. Plasmas 20 (2013) 024502.10.1063/1.4789884
    [58]
    S.M. Weng, M. Muramaki, Z.M. Sheng, Reducing ion energy spread in hole-boring radiation pressure acceleration by using two-ion-species targets, Laser Part. Beams 33 (2015) 103.10.1017/s026303461400069x
    [59]
    X. Ribeyre, Ph. Nicolaï, G. Schurtz, M. Olazabal-Loumé, J. Breil, et al., Compression phase study of the HiPER baseline target, Plasma Phys. Controlled Fusion 50 (2008) 025007.10.1088/0741-3335/50/2/025007
    [60]
    V.T. Tikhonchuk, T. Schlegel, C. Regan, M. Temporal, J.-L. Feugeas, et al., Fast ion ignition with ultra-intense laser pulses, Nucl. Fusion 50 (2010) 045003.10.1088/0029-5515/50/4/045003
    [61]
    A. Zani, D. Dellasega, V. Russo, M. Passoni, Ultra-low density carbon foams produced by pulsed laser deposition, Carbon 56 (2013) 358.10.1016/j.carbon.2013.01.029
    [62]
    C.S. Lau, J.A. Mol, J.H. Warner, G.A. Briggs, Nanoscale control of graphene electrodes, Phys. Chem. Chem. Phys. 16 (2014) 20398.10.1039/c4cp03257h
    [63]
    G. Rydzek, Q.M. Ji, M. Li, P. Schaaf, J.P. Hill, et al., Electrochemical nanoarchitectonics and layer-by-layer assembly: from basics to future, Nano Today 10 (2015) 138.10.1016/j.nantod.2015.02.008
    [64]
    D.H.H. Hoffmann, V.E. Fortov, I.V. Lomonosov, V. Mintsev, N.A. Tahir, et al., Unique capabilities of an intense heavy ion beam as a tool for equation-of-state studies, Phys. Plasmas 9 (2002) 3651; 10.1063/1.1498260
    [65]
    H. Hora, G.H. Miley, M. Ghoranneviss, B. Malekynia, N. Azizi, Laser-optical path to nuclear energy without radioactivity: fusion of hydrogen-boron by nonlinear force driven plasma blocks, Opt. Commun. 282 (2009) 4124.10.1016/j.optcom.2009.07.024
    [66]
    H. Hora, G.H. Miley, M. Ghoranneviss, B. Malekynia, N. Azizi, et al., Fusion energy without radioactivity: laser ignition of solid hydrogen-boron (11) fuel, Energy Environ. Sci. 3 (2010) 479.10.1039/b904609g
    [67]
    S.M. Weng, Q. Zhao, Z.M. Sheng, W. Yu, S.X. Luan, et al., Extreme case of Faraday effect: magnetic splitting of ultrashort laser pulses in plasmas, Optica 4 (2017) 1086–1091.10.1364/optica.4.001086
    [68]
    Y. Xu, J. Wang, X. Qi, M. Li, Y. Xing, et al., Improving the quality of proton beams via double targets driven by an intense circularly polarized laser pulse, AIP Adv. 6 (2016) 105304.10.1063/1.4965920
    [69]
    Y. Xu, J. Wang, X. Qi, M. Li, Y. Xing, et al., Plasma block acceleration via double targets driven by an ultraintense circularly polarized laser pulse, Phys. Plasmas 24 (2017) 033108.10.1063/1.4977456
    [70]
    M. Li, J.X. Wang, Y.X. Xu, W.J. Zhu, Study of plasma pressure evolution driven by strong picosecond laser pulse, Phys. Plasmas 24 (2017) 013117.10.1063/1.4973550
    [71]
    D.A.Jones, E.L.Kane, P.Lalousis, P.Wiles, H.Hora, Density modification and energetic ion production at relativistic self-focusing of laser beams in plasmas, Phys. Fluids 25 (1982) 2295.10.1063/1.863964
    [72]
    L. Cicchitelli, H. Hora, R. Postle, Longitudinal field components for laser beams in vacuum, Phys. Rev. A 41 (1990) 3727.10.1103/physreva.41.3727
    [73]
    D. Umstadter, S.-Y. Chen, A. Maksimchuk, G. Mourou, R. Wagner, Nonlinear optics in relativistic plasmas and laser wake field acceleration of electrons, Science 273 (1996) 472–475.10.1126/science.273.5274.472
    [74]
    T. Häuser, W. Scheid, H. Hora, Acceleration of electrons by intense laser pulses in vacuum, Phys. Lett. A 186 (1994) 189–192.10.1016/0375-9601(94)90338-7
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)

    Article Metrics

    Article views (133) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return