Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 2 Issue 6
Nov.  2017
Turn off MathJax
Article Contents
Sun H.Y., Kang Dongdong, Hou Yong, Dai J.Y.. Transport properties of warm and hot dense iron from orbital free and corrected Yukawa potential molecular dynamics[J]. Matter and Radiation at Extremes, 2017, 2(6). doi: 10.1016/j.mre.2017.09.001
Citation: Sun H.Y., Kang Dongdong, Hou Yong, Dai J.Y.. Transport properties of warm and hot dense iron from orbital free and corrected Yukawa potential molecular dynamics[J]. Matter and Radiation at Extremes, 2017, 2(6). doi: 10.1016/j.mre.2017.09.001

Transport properties of warm and hot dense iron from orbital free and corrected Yukawa potential molecular dynamics

doi: 10.1016/j.mre.2017.09.001
More Information
  • Corresponding author: *Corresponding author. E-mail address: jydai@nudt.edu.cn (J.Y. Dai).
  • Received Date: 2017-01-20
  • Accepted Date: 2017-09-11
  • Publish Date: 2017-11-15
  • The equation of states, diffusions, and viscosities of strongly coupled Fe at 80 and 240 eV with densities from 1.6 to 40 g/cm3 are studied by orbital-free molecular dynamics, classical molecular dynamics with a corrected Yukawa potential and compared with the results from average atom model. A new local pseudopotential is generated for orbital free calculations. For low densities, the Yukawa model captures the correct ionic interaction behavior around the first peak of the radial distribution function (RDF), thus it gives correct RDFs and transport coefficients. For higher densities, the scaled transformation of the Yukawa potential or adding a short range repulsion part to the Yukawa potential can give correct RDFs and transport coefficients. The corrected potentials are further validated by the force matching method.
  • loading
  • [1]
    V.V. Brazhkin, A.G. Lyapin, Universal viscosity growth in metallic melts at megabar pressures: the vitreous state of the Earth's inner core, Phys. Usp. 43 (2000) 493–508.10.1070/pu2000v043n05abeh000682
    [2]
    G.A. de Wijs, G. Kresse, L. Vočadlo, D. Dobson, D. Alfè, et al., The viscosity of liquid iron at the physical conditions of the Earth's core, Nature 392 (1998) 805.10.1038/33905
    [3]
    M.S. Murillo, Viscosity estimates of liquid metals and warm dense matter using the Yukawa reference system, High Energy Density Phys. 4 (2008) 49–57.10.1016/j.hedp.2007.11.001
    [4]
    D. Galmiche, S. Gauthier, On the Reynolds number in laser experiments, Jpn. J. Appl. Phys. 35 (1996) 4516.10.1143/jjap.35.4516
    [5]
    T. Desai, H.C. Pant, Control of Rayleigh-Taylor instabilities in laser accelerated seeded targets, Laser Part. Beams 18 (2000) 119.10.1017/s0263034600181145
    [6]
    Y. Ping, F. Coppari, D.G. Hicks, B. Yaakobi, D.E. Fratanduono, et al., Solid iron compressed up to 560 GPa, Phys. Rev. Lett. 111 (2013) 065501.10.1103/physrevlett.111.065501
    [7]
    F. Lambert, J. Clérouin, G. Zérah, Very-high-temperature molecular dynamics, Phys. Rev. E 73 (2006) 016403.10.1103/physreve.73.016403
    [8]
    H. Chen, A. Zhou, Orbital-free density functional theory for molecular structure calculations, Numer. Math. Theor. Meth. Appl. 1 (2008) 1–28.
    [9]
    V.V. Karasiev, T. Sjostrom, S.B. Trickey, Generalized-gradient-approximation noninteracting free-energy functionals for orbital-free density functional calculations, Phys. Rev. B 86 (2012) 115101.10.1103/physrevb.86.115101
    [10]
    V.V. Karasiev, D. Chakraborty, O.A. Shukruto, S.B. Trickey, Nonempirical generalized gradient approximation free-energy functional for orbital-free simulations, Phys. Rev. B 88 (2013) 161108.10.1103/physrevb.88.161108
    [11]
    T. Sjostrom, J. Daligault, Fast and accurate quantum molecular dynamics of dense plasmas across temperature regimes, Phys. Rev. Lett. 113 (2014) 155006.10.1103/physrevlett.113.155006
    [12]
    V.V. Karasiev, T. Sjostrom, J. Dufty, S.B. Trickey, Accurate homogeneous electron gas exchange-correlation free energy for local spin-density calculations, Phys. Rev. Lett. 112 (2014) 076403.10.1103/physrevlett.112.076403
    [13]
    S. Hamaguchi, R.T. Farouki, Thermodynamics of strongly coupled Yukawa systems near the one component plasma limit. I. Derivation of the excess energy, J. Chem. Phys. 101 (1994) 9876–9884.10.1063/1.467954
    [14]
    D. Chattopadhyay, H.J. Queisser, Electron scattering by ionized impurities in semiconductors, Rev. Mod. Phys. 53 (1981) 745–768.10.1103/revmodphys.53.745
    [15]
    H. Siegfried, Glenzer, RonaldRedmer, X-ray Thomson scattering in high energy density plasmas, Rev. Mod. Phys. 81 (2009) 1625–1663.10.1103/RevModPhys.81.1625
    [16]
    V.V. Karasiev, T. Sjostrom, S.B. Trickey, Finite-temperature orbital-free DFT molecular dynamics: coupling Profess and Quantum Espresso, Comput. Phys. Commun. 185 (2014) 3240–3249.10.1016/j.cpc.2014.08.023
    [17]
    Y. Hou, J. Yuan, Alternative ion-ion pair-potential model applied to molecular dynamics simulations of hot and dense plasmas: Al and Fe as examples, Phys. Rev. E 79 (2009) 016402.10.1103/physreve.79.016402
    [18]
    S. Kiyokawa, Multi-average ion model for hot dense plasmas derived from finite temperature density-functional theory, High Energy Density Phys. 13 (2014) 40–54.10.1016/j.hedp.2014.09.006
    [19]
    C. Gao, J. Zeng, J. Yuan, Plasma screening effects on the atomic structure and radiative opacity of dense carbon plasmas based on the DLA model, High Energy Density Phys. 7 (2011) 54–60.10.1016/j.hedp.2011.01.001
    [20]
    J.D. Kress, J.S. Cohen, D.P. Kilcrease, D.A. Horner, L.A. Collin, Orbital-free molecular dynamics simulations of transport properties in dense-plasma uranium, High Energy Density Phys. 7 (2011) 155–160.10.1016/j.hedp.2011.03.007
    [21]
    M. Marciante, M.S. Murillo, Thermodynamic and kinetic properties of shocks in two-dimensional Yukawa systems, Phys. Rev. Lett. 118 (2011) 025001.10.1103/PhysRevLett.118.025001
    [22]
    C.E. Starrett, D. Saumon, Equation of state of dense plasmas with pseudoatom molecular dynamics, Phys. Rev. E 93 (2016) 063206.10.1103/physreve.93.063206
    [23]
    C.E. Starrett, J. Daligault, D. Saumon, Pseudoatom molecular dynamics, Phys. Rev. E 91 (2015) 013104.10.1103/physreve.91.013104
    [24]
    K. Wünsch, P. Hilse, M. Schlanges, D.O. Gericke, Structure of strongly coupled multicomponent plasmas, Phys. Rev. E 77 (2008) 056404.10.1103/physreve.77.056404
    [25]
    V. Bezkrovniy, M. Schlanges, D. Kremp, W.D. Kraeft, Reaction ensemble Monte Carlo technique and hypernetted chain approximation study of dense hydrogen, Phys. Rev. E 69 (2004) 061204.10.1103/physreve.69.061204
    [26]
    Y. Hou, F. Jin, J. Yuan, Energy level broadening effect on the equation of state of hot dense Al and Au plasma, J. Phys. Condens. Matter 19 (2007) 425204.10.1088/0953-8984/19/42/425204
    [27]
    Y. Hou, R. Bredow, J. Yuan, R. Redmer, Average-atom model combined with the hypernetted chain approximation applied to warm dense matter, Phys. Rev. E 91 (2015) 033144.10.1103/physreve.91.033114
    [28]
    J.P. Poirier, Light elements in the Earth's outer core: a critical review, Phys. Earth Planet. Inter. 85 (1994) 319.10.1016/0031-9201(94)90120-1
    [29]
    T. Lay, J. Hernlund, B.A. Buffett, Core-mantle boundary heat flow, Nat. Geosci. 1 (2008) 25–32.10.1038/ngeo.2007.44
    [30]
    S. Anzellini, A. Dewaele, M. Mezouar, P. Loubeyre, G. Morard, Melting of iron at Earth's inner core boundary based on fast X-ray diffraction, Science 340 (6131) (2013) 464–466.10.1126/science.1233514
    [31]
    D. Alfè, G.D. Price, M.J. Gillan, Iron under Earth's core conditions: liquid-state thermodynamics and high-pressure melting curve from ab initio calculations, Phys. Rev. B 65 (2002) 165118.10.1103/physrevb.65.165118
    [32]
    D. Alfè, M.J. Gillan, G.D. Price, Ab initio chemical potentials of solid and liquid solutions and the chemistry of the Earth's core, J. Chem. Phys. 14 (2002) 7120.10.1063/1.1464121
    [33]
    J. Bouchet, S. Mazevet, G. Morard, F. Guyot, R. Musella, Ab initio equation of state of iron up to 1500 GPa, Phys. Rev. B 87 (2013) 094102.10.1103/physrevb.87.094102
    [34]
    Q. Cao, P. Wang, D. Huang, J. Yang, M. Wan, et al., Transport coefficients and entropy-scaling law in liquid iron up to Earth-core pressures, J. Chem. Phys. 140 (2014) 114505.10.1063/1.4868550
    [35]
    F. Luo, Y. Cheng, X. Chen, L. Cai, F. Jing, The melting curves and entropy of iron under high pressure, J. Chem. Eng. Data 56 (2011) 2063–2070.10.1021/je1010483
    [36]
    J. Dai, Y. Hou, J. Yuan, Unified first principles description from warm dense matter to ideal ionized gas plasma: electron-ion induced friction, Phys. Rev. Lett. 104 (2010) 245001.10.1103/physrevlett.104.245001
    [37]
    J. Dai, D. Kang, Z. Zhao, Y. Wu, J. Yuan, Dynamic ionic clusters with flowing electron bubbles from warm to hot dense iron along the Hugoniot curve, Phys. Rev. Lett. 109 (2012) 175701.10.1103/physrevlett.109.175701
    [38]
    D. Gilles, F. Lambert, J. Clérouin, G. Salin, Yukawa monte carlo and orbital free molecular dynamics approaches for the equation of state and structural properties of hot dense matter, High Energy Density Phys. 3 (2007) 95–98.10.1016/j.hedp.2007.02.005
    [39]
    F. Lambert, J. Clérouin, S. Mazevet, Structural and dynamical properties of hot dense matter by a Thomas-Fermi-Dirac molecular dynamics, Europhys. Lett. 75 (2006) 681–687.10.1209/epl/i2006-10184-7
    [40]
    J. Dai, Y. Hou, D. Kang, H. Sun, J. Wu, et al., Structure, equation of state, diffusion and viscosity of warm dense Fe under the conditions of giant planet core, New J. Phys. 15 (2013) 045003.10.1088/1367-2630/15/4/045003
    [41]
    C. Wang, Z.B. Wang, Q.F. Chen, P. Zhang, Quantum molecular dynamics study of warm dense iron, Phys. Rev. E 89 (2014) 023101.10.1103/physreve.89.023101
    [42]
    J.E. Bailey, T. Nagayama, G.P. Loisel, G.A. Rochau, C. Blancard, et al., A higher-than-predicted measurement of iron opacity at solar interior temperatures, Nature 517 (2015) 56–59.10.1038/nature14048
    [43]
    F. Lambert, V. Recoules, A. Decoster, J. Clérouin, M. Desjarlais, On the transport coefficients of hydrogen in the inertial confinement fusion regime, Phys. Plasmas 18 (2011) 056306.10.1063/1.3574902
    [44]
    R.P. Feynman, N. Metropolis, E. Teller, Equations of state of elements based on the generalized Fermi-Thomas theory, Phys. Rev. 75 (1949) 1561–1573.10.1103/physrev.75.1561
    [45]
    C. Huang, E.A. Carter, Transferable local pseudopotentials for magnesium, aluminum and silicon, Phys. Chem. Chem. Phys. 10 (2008) 7109.10.1039/b810407g
    [46]
    W.R.Johnson, FORTRAN Program for Temperature-dependent Thomas-Fermi Atom, 2002 http://www.nd.edu/johnson/.
    [47]
    X. Gonze, J.M. Beuken, R. Caracas, F. Detraux, M. Fuchs, et al., First-principles computation of material properties: the ABINIT software project, Comput. Mater. Sci. 25 (2002) 478–492.10.1016/s0927-0256(02)00325-7
    [48]
    X. Gonze, G. Rignanese, M. Verstraete, J. Beuken, Y. Pouillon, et al., A brief introduction to the ABINIT software package, Z. Krist. 220 (2005) 558–562.10.1524/zkri.220.5.558.65066
    [49]
    C. Hartwigsen, S. Goedecker, J. Hutter, Relativistic separable dual-space Gaussian pseudopotentials from H to Rn, Phys. Rev. B 58 (1998) 3641–3662. The energy cutoff is set to be 100 Hartree and Gamma point is used in the sampling of the Brillouin zone. It is necessary to check whether the 16 electrons pseudopotential is transferrable at 40 g/cm3 and 80 eV. Some structures extracted from the molecular dynamics are calculated using a 22 electrons PAW pseudopotential, and the difference in the pressure between the two sets is about 5%.
    [50]
    F. Zhang, Operator-splitting integrators for constant-temperature molecular dynamics, J. Chem. Phys. 106 (1997) 6102–6106.10.1063/1.473273
    [51]
    M.P.Allen, D.J.Tildesley, Molecular Simulation of Liquids, Oxford Science Publications, Oxford,1987.
    [52]
    T.G. White, S. Richardson, B.J.B. Crowley, L.K. Pattison, J.W.O. Harris, et al., Orbital-free density-functional theory simulations of the dynamic structure factor of warm dense aluminum, Phys. Rev. Lett. 111 (2013) 175002.10.1103/physrevlett.111.175002
    [53]
    J.F. Danel, L. Kazandjian, G. Zérah, Numerical convergence of the self-diffusion coefficient and viscosity obtained with Thomas-Fermi-Dirac molecular dynamics, Phys. Rev. E 85 (2012) 066701.10.1103/physreve.85.066701
    [54]
    F. Lambert, J. Clérouin, S. Mazevet, D. Gilles, Properties of hot dense plasmas by orbital-free molecular dynamics, Contrib. Plasma Phys. 47 (2007) 272–280.10.1002/ctpp.200710037
    [55]
    Y. Hou, F. Jin, J. Yuan, Influence of the electronic energy level broadening on the ionization of atoms in hot and dense plasmas: an average atom model demonstration, Phys. Plasmas 13 (2006) 093301.10.1063/1.2338023
    [56]
    K. Wünsch, J. Vorberger, D.O. Gericke, Ion structure in warm dense matter: benchmarking solutions of hypernetted-chain equations by first-principle simulations, Phys. Rev. E 79 (2009) 010201 (R).10.1103/physreve.79.010201
    [57]
    J. Vorberger, D.O. Gericke, Effective ion-ion potentials in warm dense matter, High Energy Density Phys. 9 (2013) 178–186.10.1016/j.hedp.2012.12.009
    [58]
    S. Izvekov, M. Parinello, C.J. Burnham, G.A. Voth, Effective force fields for condensed phase systems from ab initio molecular dynamics simulation: a new method for force-matching, J. Chem. Phys. 120 (2004) 10896–10913.10.1063/1.1739396
    [59]
    The a/r4 SRR term has a disadvantage that it cannot be Fourier-transformed which restricts some applications such as the derivation of local field corrections, and a modified type is provided in J. Vorberger, D. O. Gericke, Effective ion-ion potentials in warm dense matter, High Energy Density Phys. 9 2013 178–186.10.1016/j.hedp.2012.12.009
    [60]
    H. Sun, D. Kang, J. Dai, W. Ma, L. Zhou, et al., First-principles study on equation of states and electronic structures of shock compressed Ar up to warm dense regime, J. Chem. Phys. 144 (2016) 124503.10.1063/1.4943767
    [61]
    F. Ercolessi, J.B. Adams, Interatomic potentials from first-principles calculations, Europhys. Lett. 26 (8) (1994) 583–588.10.1209/0295-5075/26/8/005
    [62]
    T. Ott, M. Bonitz, L. Stanton, M.S. Murillo, Coupling strength in Coulomb and Yukawa one-component plasmas, Phys. Plasmas 21 (2014) 113704.10.1063/1.4900625
    [63]
    M.S. Murillo, J. Weisheit, S.B. Hansen, M.W.C. Dharma-wardana, Partial ionization in dense plasmas: comparisons among average-atom density functional models, Phys. Rev. E 87 (2013) 063113.10.1103/physreve.87.063113
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views (69) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return