Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 3 Issue 1
Jan.  2018
Turn off MathJax
Article Contents
Horioka Kazuhiko. Progress in particle-beam-driven inertial fusion research: Activities in Japan[J]. Matter and Radiation at Extremes, 2018, 3(1). doi: 10.1016/j.mre.2017.08.002
Citation: Horioka Kazuhiko. Progress in particle-beam-driven inertial fusion research: Activities in Japan[J]. Matter and Radiation at Extremes, 2018, 3(1). doi: 10.1016/j.mre.2017.08.002

Progress in particle-beam-driven inertial fusion research: Activities in Japan

doi: 10.1016/j.mre.2017.08.002
  • Received Date: 2017-06-08
  • Accepted Date: 2017-08-11
  • Publish Date: 2018-01-15
  • Research activities in Japan relevant to particle beam inertial fusion are briefly reviewed. These activities can be ascended to the 1980s. During the past three decades, significant progress in particle beam fusion, pulsed power systems, accelerator schemes for intense beams, target physics, and high-energy-density physics research has been made by a number of research groups at universities and accelerator facilities in Japan. High-flux ions have been extracted from laser ablation plasmas. Controllability of the ion velocity distribution in the plasma by an axial magnetic and/or electric field has realized a stable high-flux low-emittance beam injector. Beam dynamics have been studied both theoretically and experimentally. The efforts have been concentrated on the beam behavior during the final compression stage of intense beam accelerators. A novel accelerator scheme based on a repetitive induction modulator has been proposed as a cost-effective particle-beam driver scheme. Beam-plasma interaction and pulse-powered plasma experiments have been investigated as relevant studies of particle beam inertial fusion. An irradiation method to mitigate the instability in imploding target has been proposed using oscillating heavy-ion beams. The new irradiation method has reopened the exploration of direct drive scheme of particle beam fusion.
  • loading
  • [1]
    G.W. Kuswa, Inertial confinement fusion with particle beams, IEEE Trans. Nucl. Sci. 24 (1977) 975–980.10.1109/tns.1977.4328824
    [2]
    S. Kawasaki, A. Miyahara, System design of heavy ion fusion experiment, in: Proc. Third International Topical Conference on High-Power Electron and Ion Beam Research and Technology, 1979, pp. 465–472.
    [3]
    S. Humphries Jr., Intense pulsed ion beams for fusion applications, Nucl. Fusion 20 (1980) 1549–1612.10.1088/0029-5515/20/12/006
    [4]
    J.P. Vandevender, Light-ion beams for inertial confinement fusion, Nucl. Fusion 25 (1985) 1373.10.1088/0029-5515/25/9/067
    [5]
    K. Imasaki, S. Miyamoto, S. Nakai, K. Nishihara, H. Takabe, et al., Inertial confinement fusion research with light ion beams at ILE, in: Plasma Physics and Controlled Nuclear Fusion Research 1986, IAEA-CN-47/B-II-5, 1986, pp. 103–112.
    [6]
    K. Yatsui, Y. Shimosaki, Y. Araki, K. Masugata, S. Kawata, et al., Inertial confinement fusion research with intense pulsed light ion beams, in: Plasma Physics and Controlled Nuclear Fusion Research 1986, IAEA-CN-49/B-III-9, 1986, pp. 177–186.
    [7]
    K. Kasuya, K. Horioka, T. Takahashi, A. Urai, M. Hijikawa, New type of pulsed ion source with cryogenic pulsed ion diode, Appl. Phys. Lett. 39 (1981) 887.10.1063/1.92595
    [8]
    K. Kasuya, K. Horioka, H. Yoneda, M. Funatsu, S. Saitoh, et al., Recent experimental results of cryogenic pulsed ion diode, in: Plasma Physics and Controlled Nuclear Fusion Research 1986, IAEA-CN-47/B-III-7, 1986, pp. 161–166.
    [9]
    T. Aoki, K. Niu, Numerical experiment for focus of rotating and propagating LIB in Plasma I—Quasi-neutral approximation, Laser Part. Beams 6 (1988) 737–750.10.1017/s0263034600005681
    [10]
    K. Niu, S. Kawata, Proposal of power plant by light ion beams fusion, Fusion Technol. 11 (1987) 365–373.10.13182/fst87-a25014
    [11]
    K. Horioka, H. Yoneda, K. Kasuya, Acceleration gap behavior of flashover-type pulsed ion diode, IEEE Trans. Plasma Sci. 17 (1989) 793–796.10.1109/27.41206
    [12]
    S. Humphries Jr., Charged Particle Beams, John Wiley and Suns, Inc., 1990.
    [13]
    C. Deutsch, Inertial confinement fusion driven by intense ion beams, Ann. Phys. 11 (1986) 1–111.10.1051/anphys:019860011010100
    [14]
    B.G. Logan, F. Bieniosek, C. Celata, J. Coleman, W.G. Greenway, et al., Recent US advances in ion-beam-driven high energy density physics and heavy ion fusion, Nucl. Instrum. Methods Phys. Res., Sect. A 577 (2007) 1–7.10.1016/j.nima.2007.02.070
    [15]
    P.A. Seidl, J.J. Barnard, A. Faltens, A. Friedman, Research and development toward heavy ion driven inertial fusion energy, Phys. Rev. Spec. Top.--Accel. Beams 16 (2013) 024701.10.1103/physrevstab.16.024701
    [16]
    J.J. Barnard, R.O. Bangerter, E. Henestroza, I.D. Kaganovich, B.G. Logan, et al., A final focus model for heavy-ion fusion driver system codes, Nucl. Instrum. Methods Phys. Res., Sect. A 544 (2005) 243–254.10.1016/j.nima.2005.01.212
    [17]
    A. Friedman, J.J. Barnard, R.H. Cohen, D.P. Groto, S.M. Lund, et al., Beam dynamics of the neutralized drift compression experiments ii: A novel pulse-compressing ion accelerator, Phys. Plasmas 17 (2010) 056704.10.1063/1.3292634
    [18]
    D.H.H. Hoffmann, V.E. Fortov, H. Kuster, L.K. Weyrich, High energy density physics generated by intense heavy ion beams, Astrophys. Space Sci. 322 (2009) 167–177.10.1007/s10509-009-0001-2
    [19]
    B.Yu. Sharkov, D.H.H. Hoffmann, A.A. Golubev, Y.T. Zhao, High energy density physics with intense ion beams, Matter Radiat. Extremes 1 (2016) 28–47.10.1016/j.mre.2016.01.002
    [20]
    M. Okamura, Y. Oguri, K. Sasa, T. Ito, M. Okada, et al., Design and construction of heavy ion RFQ linac with effective acceleration structure, Nucl. Instrum. Methods Phys. Res., Sect. B 89 (1994) 38–41.10.1016/0168-583x(94)95141-1
    [21]
    K. Horioka, T. Kawamura, M. Nakajima, T. Sasaki, K. Kondo, et al., High-energy-density physics researches based on heavy ion accelerator and pulse power devices, Nucl. Instrum. Methods Phys. Res., Sect. A 577 (2007) 298–302.10.1016/j.nima.2007.02.065
    [22]
    S. Kawata, K. Horioka, M. Murakami, Y. Oguri, J. Hasegawa, et al., Studies on heavy ion fusion and high energy density physics in Japan, Nucl. Instrum. Methods Phys. Res., Sect. A 557 (2007) 21–29.10.1016/j.nima.2007.02.007
    [23]
    K. Horioka, T. Kawamura, M. Nakajima, K. Kondo, M. Ogawa, et al., Activities on heavy ion inertial fusion and beam-driven high energy density science in Japan, Nucl. Instrum. Methods Phys. Res., Sect. A 606 (2009) 1–5.10.1016/j.nima.2009.03.227
    [24]
    J.W. Kwan, High current ion sources and injectors for induction linacs in heavy ion fusion, IEEE Trans. Plasma Sci. 33 (2005) 1901–1910.10.1109/tps.2005.860063
    [25]
    J.J. Barnard, R.O. Bangerter, A. Faltens, T.J. Fessenden, A. Friedman, et al., Induction accelerator architectures for heavy ion fusion, Nucl. Instrum. Methods Phys. Res., Sect. A 415 (1998) 218–228.10.1016/s0168-9002(98)00387-8
    [26]
    M. Okamura, T. Katayama, R.A. Jameson, T. Takeuchi, H. Kashiwagi, Scheme for direct plasma injection into an RFQ linac, Laser Part. Beams 20 (2002) 455.10.1017/s0263034602203171
    [27]
    J. Hasegawa, M. Yoshida, Y. Oguri, M. Ogawa, M. Nakajima, et al., High-current laser ion source for induction accelerators, Nucl. Instrum. Methods Phys. Res., Sect. B 161–163 (2000) 1104–1107.10.1016/s0168-583x(99)00985-4
    [28]
    B. Sharkov, R. Scrivens, Laser ion sources, IEEE Trans. Plasma Sci. 33 (2005) 1778–1785.10.1109/tps.2005.860080
    [29]
    M. Yoshida, J. Hasegawa, J.W. Kwan, Y. Oguri, M. Nakajima, et al., Grid-controlled extraction of low-charged ions from a laser ion source, Jpn. J. Appl. Phys. 42 (2003) 5367–5371.10.1143/jjap.42.5367
    [30]
    Y. Oguri, K. Kashiwagi, J. Kaneko, J. Hasegawa, M. Yoshida, et al., Extraction of high-intensity ion beams from a laser plasma by a pulsed spherical diode, Phys. Rev. Spec. Top.--Accel. Beams 8 (2005) 1–8 060401.10.1103/physrevstab.8.060401
    [31]
    S. Ikeda, K. Horioka, M. Okamura, Measurement of magnetic field fluctuation and diamagnetic current within laser ablation plasma interacting with axial magnetic field, J. Appl. Phys. (2017) to be published.10.1063/1.5006636
    [32]
    M. Okamura, A. Adeyemi, T. Kanesue, J. Tamura, K. Kondo, et al., Magnetic plasma confinement for laser ion source, Rev. Sci. Instrum. 81 (2010) 02A510.10.1063/1.3267312
    [33]
    S. Ikeda, M. Nakajima, K. Horioka, Control of laser ablation plasma with longitudinal magnetic field, Plasma Fusion Res. 7 (2012) 1201015.10.1585/pfr.7.1201015
    [34]
    S. Ikeda, M. Nakajima, J. Hasegawa, K. Horioka, Magnetic control of laser ablation plasma for high-flux ion injectors, Nucl. Instrum. Methods Phys. Res., Sect. A 733 (2014) 103.10.1016/j.nima.2013.05.088
    [35]
    S. Ikeda, K. Horioka, M. Okamura, Investigation of the tail of a Fe plasma passing through solenoidal magnetic field for a laser ion source, IEEE Trans. Plasma Sci. 43 (2015) 3456.10.1109/tps.2015.2421284
    [36]
    F. Isono, M. Nakajima, J. Hasegawa, T. Kawamura, K. Horioka, Control of laser plasma potential with external electrodes, Phys. Plasmas 22 (2015) 084501.10.1063/1.4927772
    [37]
    F. Isono, M. Nakjima, J. Hasegawa, K. Horioka, Ion extraction from positively biased laser ablation plasma, Phys. Plasmas 23 (2016) 073102.10.1063/1.4955330
    [38]
    Y. Sakai, T. Itagaki, K. Horioka, Comparative measurements of ion and electron beams from laser ablation plasma, J. Plasma Fusion Res. 11 (2016) 1206107.10.1585/pfr.11.1206107
    [39]
    Y. Sakai, T. Itagaki, K. Horioka, Maximum available flux of charged particle from the laser ablation plasma, Phys. Plasmas 23 (2016) 123112.10.1063/1.4972090
    [40]
    N. Hershkowitz, Sheath: more complicated than you think, Phys. Plasmas 12 (2005) 055502.10.1063/1.1887189
    [41]
    T. Kikuchi, M. Nakajima, K. Horioka, Bunching dynamics and transport window of intense ion beams in final beam buncher, Laser Part. Beams 20 (2002) 589–593.10.1017/s0263034602204176
    [42]
    T. Kikuchi, M. Nakajima, K. Horioka, Beam dynamics simulation in final beam bunching of heavy ion inertial fusion, J. Plasma Fusion Res. 79 (2003) 105.10.1585/jspf.79.105
    [43]
    T. Kikuchi, M. Nakajima, K. Horioka, A quasi-equilibrium beam compression in a recirculator for heavy ion fusion, Phys. Plasmas 9 (2002) 3476.10.1063/1.1491534
    [44]
    T. Kikuchi, M. Nakajima, K. Horioka, T. Katayama, Beam instability induced by space charge oscillation during final beam bunching for heavy ion fusion, Phys. Rev. Spec. Top.--Accel. Beams 7 (2004) 034201.10.1103/physrevstab.7.034201
    [45]
    T. Kikuchi, K. Horioka, M. Nakajima, S. Kawata, Beam dynamics during longitudinal bunch compression of high-current heavy-ion beams, Nucl. Instrum. Methods Phys. Res., Sect. A 577 (2007) 103–109.10.1016/j.nima.2007.02.040
    [46]
    T. Kikuchi, K. Horioka, Beam behavior under a non-stationary state in high-current heavy ion beams, Nucl. Instrum. Methods Phys. Res., Sect. A 606 (2009) 31–36.10.1016/j.nima.2009.03.181
    [47]
    T. Kikuchi, K. Horioka, Halo formation and emittance growth during bunch compression of high-current heavy ion beams, J. Plasma Fusion Res. 8 (2009) 1230–1233.
    [48]
    T. Kikuchi, K. Horioka, K. Takahashi, T. Sasaki, T. Aso, et al., Numerical simulation for longitudinal and transverse coupling motion in compact electron beam simulator for heavy ion inertial fusion, Prog. Nucl. Energy 82 (2015) 126–129.10.1016/j.pnucene.2014.07.023
    [49]
    T. Kikuchi, Y. Sakai, J. Hasegawa, K. Horioka, K. Takahashi, et al., Theoretical estimation and multi-particle simulation on evolution of longitudinal and transverse temperatures during pulse compression in compact simulator for heavy ion inertial fusion, IEEE Trans. Plasma Sci. 44 (2) (2016) 216–220.10.1109/tps.2015.2513016
    [50]
    R.C. Davidson, H. Qin, Physics of Intense Charged Particle Beams in High Energy Accelerators. Imperial College Press, 2001.
    [51]
    M. Reiser, Theory and Design of Charged Particle Beams. Wiley, New York, 1994.
    [52]
    S. Lund, T. Kikuchi, R. Davidson, Generation of initial kinetic distributions for simulation of long-pulse charged particle beams with high space-charge intensity, Phys. Rev. Special Top.--Accel. Beams 12 (2009) 114801.10.1103/physrevstab.12.114801
    [53]
    T. Kikuchi, K. Horioka, Static analysis of possible emittance growth of intense charged particle beams with thermal equilibrium distribution, Phys. Plasmas 16 (2009) 050703.10.1063/1.3130264
    [54]
    T. Kikuchi, K. Horioka, Maximum possible growth in static analysis of intense charged particle beams with thermal equilibrium distribution, IEEJ Trans. FM 135 (2015) 161–162.10.1541/ieejfms.135.161
    [55]
    T. Kikuchi, K. Horioka, Possible emittance growth induced by nonlinear space charge fields for arbitrary particle distributions, Phys. Rev. Accel. Beams 19 (2016) 064201.10.1103/physrevaccelbeams.19.064201
    [56]
    A. Nakayama, Y. Sakai, Y. Miyazaki, T. Kikuchi, M. Nakajima, et al., Longitudinal bunch compression study with induction voltage modulator, EPJ Web. Conf. 59 (2013) 09005.10.1051/epjconf/20135909005
    [57]
    B. Beaudoin, I. Haber, R.A. Kishek, S. Bernal, T. Koeth, et al., Longitudinal confinement and matching of an intense electron beam, Phys. Plasmas 18 (2011) 013104.10.1063/1.3537820
    [58]
    Y. Sakai, M. Nakajima, K. Horioka, Reproducible and controllable induction voltage adder for scaled beam experiments, Rev. Sci. Instrum. 87 (2016) 083306.10.1063/1.4961029
    [59]
    Y. Sakai, M. Nakajima, J. Hasegawa, T. Kikuchi, K. Horioka, 2014. A scaled experiment to study dynamics during longitudinal compression of intense charged particle beams, Nucl. Instrum. Methods Phys. Res., Sect. A 733, 70–74.10.1016/j.nima.2013.05.092
    [60]
    Y. Sakai, M. Nakajima, T. Kikuchi, J. Hasegawa, K. Horioka, A scaled experiment to study energy dissipation process during longitudinal compression of charged particle beams, J. Phys. Conf. Ser. 688 (2016) 012097.10.1088/1742-6596/688/1/012097
    [61]
    K. Horioka, J. Hasegawa, M. Nakajima, M. Ogawa, K. Takayama, et al., Long pulse ion induction linac, Nucl. Instrum. Methods Phys. Res., Sect. A 415 (1998) 291–295.10.1016/s0168-9002(98)00397-0
    [62]
    K. Takayama, J. Kishiro, Induction synchrotron, Nucl. Instrum. Methods Phys. Res., Sect. A 451 (2000) 304–317.10.1016/s0168-9002(00)00557-x
    [63]
    M. Watanabe, M. Nakajima, K. Horioka, Voltage modulation and repetitive operation of induction ion accelerator, Nucl. Instrum. Methods Phys. Res., Sect. A 464 (2001) 440–444.10.1016/s0168-9002(01)00102-4
    [64]
    K. Horioka, M. Nakajima, M. Watanabe, K. Takayama, E. Hotta, et al., Repetitive induction voltage modulator for heavy ion fusion, Laser Part. Beams 20 (2002) 609–612.10.1017/s0263034602204243
    [65]
    M. Watanabe, M. Nakajima, M. Shiho, K. Horioka, K. Takayama, et al., Magnetic core characteristics for high rep-rate induction modulator, Rev. Sci. Instrum. 73 (2002) 1756–1760.10.1063/1.1458043
    [66]
    M. Watanabe, M. Honda, M. Nakajima, K. Horioka, K. Takayama, et al., Induction Synchrotron (6): Beam Loading, Particle Accelerator Conference (PAC2001), Chicago, 2001.
    [67]
    K. Takayama, K. Koseki, K. Torikai, A. Tokuchi, E. Nakamura, et al., Observation of the acceleration of a single bunch by using the induction device in the KEK proton synchrotron, Phys. Rev. Lett. 94 (2005) 144801.10.1103/physrevlett.94.144801
    [68]
    K. Takayama, Y. Arakida, T. Dixit, T. Iwashita, T. Kono, et al., Experimental demonstration of the induction synchrotron, Phys. Rev. Lett. 98 (2007) 054801.10.1103/physrevlett.98.054801
    [69]
    K. Takayama, Y. Arakida, T. Iwashita, Y. Shimosaki, T. Dixit, et al., All-ion accelerators: an injection-free synchrotron, J. Appl. Phys. 101 (2007) 063304.10.1063/1.2697259
    [70]
    J. Barnard, K. Horioka, Ion induction accelerators, in: K. Takayama , J. Briggs (Eds.), Induction Accelerators, Springer, 2010, p. 185.
    [71]
    K. Takayama, K. Horioka, A quantum beam driver for the future inertial fusion, in: 21st International Symposium on Heavy Ion Fusion, Astana, Kazakhstan, 2016.
    [72]
    K. Takayama, T. Adachi, M. Wake, K. Okamura, A racetrack shaped fixed field induction accelerator for giant cluster ions, Phys. Rev. Special Top.--Accel. Beams 18 (2015) 050101.10.1103/physrevstab.18.050101
    [73]
    Y. Iwata, K. Tomita, T. Uchida, H. Matsuhata, Crystallographic coalescence of crystalline silicone clusters into superlattice structures, Crustal Growth Des. 15 (2015) 2119.10.1021/cg5016753
    [74]
    C. Deutsch, G. Maynand, Ion stopping in dense plasmas: a basic physics approach, Matter Radiat. Extremes 1 (2016) 277–307.10.1016/j.mre.2016.11.004
    [75]
    U. Neuner, M. Ogawa, H. Kobayashi, M. Takizawa, K. Nishigori, et al., Interaction experiments of MeV heavy ions with a laser plasma and a Z-pinch helium plasma, Nucl. Instrum. Methods Phys. Res., Sect. A 415 (1998) 586–590.10.1016/s0168-9002(98)00388-x
    [76]
    J. Hasegawa, S. Hirai, K. Katagiri, M. Yonaha, H. Fukuda, et al., Interaction experiments using thin-foil-discharge warm-dense plasma, Nucl. Instrum. Methods Phys. Res., Sect. A 577 (2007) 376–380.10.1016/j.nima.2007.02.034
    [77]
    M. Ogawa, U. Neuner, A. Sakumi, J. Hasegawa, K. Sasa, et al., Heavy ion beam inertial confinement fusion studies in TIT, Fusion Eng. Des. 44 (1999) 279–283.10.1016/s0920-3796(98)00347-0
    [78]
    Y. Oguri, T. Niinou, S. Nishinomiya, K. Katagiri, J. Kaneko, et al., Firsov approach to heavy-ion stopping in warm matter using a finite-temperature Thomas-Fermi model, Nucl. Instrum. Methods Phys. Res., Sect. A 577 (1–2) (2007) 381–385.10.1016/j.nima.2007.02.009
    [79]
    K. Katagiri, J. Hasegawa, T. Niinou, Y. Oguri, Time-resolved measurement of a shock-driven plasma target for interaction experiments between heavy-ions and plasmas, J. Appl. Phys. 102 (11) (2007) 113304-1-8.10.1063/1.2812431
    [80]
    S. Nishinomiya, K. Katagiri, T. Niinou, J. Kaneko, H. Fukuda, et al., Time-resolved measurement of energy loss of low-energy heavy ions in a plasma using a surface-barrier charged-particle detector, Prog. Nucl. Energy 50 (2008) 606–610.10.1016/j.pnucene.2007.11.047
    [81]
    T. Sasaki, Y. Yano, M. Nakajima, T. Kawamura, K. Horioka, Warm-dense-matter studies using pulse-power wire discharges in water, Laser Part. Beams 24 (2006) 371–380.10.1017/s0263034606060538
    [82]
    T. Sasaki, M. Nakajima, T. Kawamura, K. Horioka, Electrical conductivities of aluminum, copper, and tungsten observed by an underwater explosion, Phys. Plasmas 17 (2010) 084501.10.1063/1.3475430
    [83]
    T. Sasaki, T. Takahashi, Y. Amano, Y. Miki, T. Kiikuchi, et al., A semiempirical evaluation of the thermal conductivity in ablated dense tungsten plasma, IEEE Trans. Plasma Sci. 40 (2012) 3455–3457.10.1109/tps.2012.2219510
    [84]
    T. Sasaki, T. Kikuchi, N. Harada, K. Horioka, Target design for high energy density physics experiment using intense ion beams, J. Phys. Conf. Ser. 244 (2010) 042019.10.1088/1742-6596/244/4/042019
    [85]
    Y. Oguri, K. Kondo, J. Hasegawa, K. Horioka, Numerical analysis of the hydrodynamic behavior of ion-beam-heated uranium target for equation-of-state studies under extreme conditions, Energy Procedia 71 (2015) 244–251.10.1016/j.egypro.2014.11.876
    [86]
    T. Kawamura, K. Horioka, F. Koike, Potential of Kα radiation by energetic ionic particles for high energy density plasma diagnostics, Laser Part. Beams 24 (2006) 261–267.10.1017/s0263034606060393
    [87]
    M. Murakami, J. Meyer-ter-Vehn, Radiation symmetrization in indirectly driven ICF targets, Nucl. Fusion 31 (1991) 1333–1342.10.1088/0029-5515/31/7/008
    [88]
    S. Kawata, K. Miyazawa, T. Kikuchi, T. Someya, Robust heavy-ion-beam illumination in direct-driven heavy-ion inertial fusion, Nucl. Instrum. Methods Phys. Res., Sect. A 577 (2007) 327.10.1016/j.nima.2007.02.024
    [89]
    S. Kawata, T. Karino, Robust dynamic mitigation of instabilities, Phys. Plasmas 22 (2015) 042106.10.1063/1.4917340
    [90]
    B.G. Logan, L.J. Perkins, J.J. Barnard, Direct drive heavy-ion-beam inertial fusion at high coupling efficiency, Phys. Plasmas 15 (2008) 072701.10.1063/1.2950303
    [91]
    S. Kawata, T. Karino, A.I. Ogoyski, Review of heavy-ion inertial fusion physics, Matter Radiat. Extremes 1 (2016) 89–113.10.1016/j.mre.2016.03.003
    [92]
    M. Murakami, H. Nagatomo, H. Azechi, F. Ogando, S. Eliezer, Innovative ignition scheme for ICF-impact fast ignition, Nucl. Fusion 46 (2006) 99.10.1088/0029-5515/46/1/011
    [93]
    M. Murakami, T. Sakaiya, J. Sanz, Self-similar ablative flow of nonstationary accelerating foil due to nonlinear heat conduction, Phys. Plasmas 14 (2007) 022707.10.1063/1.2437750
    [94]
    K. Horioka, S. Kawata, K. Takayama, Y. Oguri, J. Hasegawa, et al., Progress of high-power-accelerator research for heavy ion fusion, J. Plasma Fusion Res. 89 (2013) 87–118.
    [95]
    K. Takayama, K. Horioka, S. Kawata, J. Hasegawa, T. Kikuchi, et al., (in preparation).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)

    Article Metrics

    Article views (99) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return