Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 3 Issue 1
Jan.  2018
Turn off MathJax
Article Contents
Kodanova S.K., Issanova M.K., Amirov S.M., Ramazanov T.S., Tikhonov A., Moldabekov Zh.A.. Relaxation of non-isothermal hot dense plasma parameters[J]. Matter and Radiation at Extremes, 2018, 3(1). doi: 10.1016/j.mre.2017.07.005
Citation: Kodanova S.K., Issanova M.K., Amirov S.M., Ramazanov T.S., Tikhonov A., Moldabekov Zh.A.. Relaxation of non-isothermal hot dense plasma parameters[J]. Matter and Radiation at Extremes, 2018, 3(1). doi: 10.1016/j.mre.2017.07.005

Relaxation of non-isothermal hot dense plasma parameters

doi: 10.1016/j.mre.2017.07.005
More Information
  • Corresponding author: *Corresponding author. Institute for Experimental and Theoretical Physics, Al-Farabi Kazakh National University, 71 Al-Farabi Str., 050040 Almaty, Kazakhstan. E-mail address: zhandos@physics.kz (Zh.A. Moldabekov).
  • Received Date: 2017-05-13
  • Accepted Date: 2017-07-16
  • Available Online: 2021-12-07
  • Publish Date: 2018-01-15
  • The relaxation of temperature, coupling parameters, the excess part of equation of state, and the correlation energy of the non-isothermal hot dense plasmas are considered on the basis of the method of effective interaction potentials. The electron–ion effective interaction potential for the hot dense plasma is discussed. The accuracy of description of the dense plasma properties by the effective electron–ion interaction potential is demonstrated by the agreement of the derived quantities like stopping power and transport coefficients calculated using our methodology with the results of the finite-temperature Kohn-Sham density-functional theory molecular dynamics, and orbital-free molecular dynamics results as well as with the data obtained using other theoretical approaches.
  • loading
  • [1]
    D.H.H. Hoffmann, A. Blazevic, O. Rosmej, M. Roth, N.A. Tahir, et al., Present and future perspectives for high energy density physics with intense heavy ion and laser beams, Laser Part. Beams 23 (2005) 47–53.10.1017/s026303460505010x
    [2]
    B. Yu. Sharkov, D.H.H. Hoffmann, A.A. Golubev, Y. Zhao, High energy density physics with intense ion beams, Matter Radiat. Extremes 1 (2016) 28–47.10.1016/j.mre.2016.01.002
    [3]
    S. Kawata, T. Karino, A.I. Ogoyski, Review of heavy-ion inertial fusion physics, Matter Radiat. Extremes 1 (2016) 89–113.10.1016/j.mre.2016.03.003
    [4]
    O.A. Hurricane, D.A. Callahan, D.T. Casey, P.M. Celliers, C. Cerjan, et al., Fuel gain exceeding unity in an inertially confined fusion implosion, Nature 506 (2014) 343.10.1038/nature13008
    [5]
    M.R. Gomez, S.A. Slutz, A.B. Sefkow, D.B. Sinars, K.D. Hahn, et al., Experimental demonstration of fusion-relevant conditions in magnetized liner inertial fusion, Phys. Rev. Lett. 113 (2014) 155003.10.1103/physrevlett.113.155003
    [8]
    M.K. Issanova, S.K. Kodanova, T.S. Ramazanov, D.H.H. Hoffmann, Transport properties of inertial confinement fusion dense plasmas, Contrib. Plasma Phys. 56 (5) (2016) 425.10.1002/ctpp.201500134
    [9]
    T.S. Ramazanov, Zh.A. Moldabekov, M.T. Gabdullin, Effective potentials of interactions and thermodynamic properties of a nonideal two-temperature dense plasma, Phys. Rev. E 92 (2015) 023104.10.1103/physreve.92.023104
    [10]
    T. Ramazanov, Zh. Moldabekov, M. Gabdullin, Multipole expansion in plasmas: effective interaction potentials between compound particles, Phys. Rev. E 93 (2016) 053204.10.1103/physreve.93.053204
    [11]
    T.S. Ramazanov, Zh.A. Moldabekov, M.T. Gabdullin, T.N. Ismagambetova, Interaction potentials and thermodynamic properties of two component semiclassical plasma, Phys. Plasmas 21 (2014) 012706.10.1063/1.4862549
    [12]
    C.A. Ordonez, M.I. Molina, Evaluation of the Coulomb logarithm using cutoff and screened Coulomb potentials, Phys. Plasmas 1 (1994) 2515.10.1063/1.870578
    [13]
    T.S. Ramazanov, S.K. Kodanova, Coulomb logarithm of a nonideal plasma, Phys. Plasmas 8 (2001) 5049.10.1063/1.1407820
    [14]
    S.K. Kodanova, T.S. Ramazanov, M.K. Issanova, G.N. Nigmetova, Zh.A. Moldabekov, Investigation of Coulomb logarithm and relaxation processes in dense plasma on the basis of effective potentials, Contrib. Plasma Phys. 55 (2015) 271.10.1002/ctpp.201400094
    [15]
    M.K. Issanova, S.K. Kodanova, T.S. Ramazanov, N.Kh. Bastykova, Zh.A. Moldabekov, et al., Classical scattering and stopping power in dense plasmas: the effect of diffraction and dynamic screening, Laser Part. Beams 34 (2016) 457–466.10.1017/s026303461600032x
    [16]
    T.S. Ramazanov, S.K. Kodanova, Zh.A. Moldabekov, M.K. Issanova, Dynamical properties of non-ideal plasma on the basis of effective potentials, Phys. Plasmas 20 (2013) 112702.10.1063/1.4829042
    [17]
    Zh.A. Moldabekov, P. Ludwig, J.P. Joost, M. Bonitz, T.S. Ramazanov, Dynamical screening and wake effects in classical, quantum, and ultrarelativistic plasmas, Contrib. Plasma Phys. 55 (2015) 186.10.1002/ctpp.201400105
    [18]
    Zh.A. Moldabekov, P. Ludwig, M. Bonitz, T.S. Ramazanov, Notes on anomalous quantum wake effects, Contrib. Plasma Phys. 56 (2016) 442.10.1002/ctpp.201500137
    [19]
    T.S. Ramazanov, K.N. Dzhumagulova, A.Zh. Akbarov, Cross sections and transport coefficients of dense partially ionized semiclassical plasma, J. Phys. A Math. Gen. 39 (2006) 4335.10.1088/0305-4470/39/17/s04
    [20]
    M.-Y. Song, Y.-D. Jung, Quantum screening effects on the electron-ion occurrence scattering time advance in strongly coupled semiclassical plasmas, Phys. Plasmas 10 (2003) 3051.10.1063/1.1589750
    [21]
    H.-M. Kim, Y.-D. Jung, Quantum effects on polarization transport scatterings in partially ionized dense hydrogen plasmas, Phys. Plasmas 14 (2007) 074501.10.1063/1.2751605
    [22]
    D.-H. Ki, Y.-D. Jung, Quantum screening effects on the ion-ion collisions in strongly coupled semiclassical plasmas, Phys. Plasmas 17 (2010) 074506.10.1063/1.3463702
    [23]
    F.B. Baimbetov, Kh.T. Nurekenov, T.S. Ramazanov, Pseudopotential theory of classical non-ideal plasmas, Phys. Lett. A 202 (1995) 211.10.1016/0375-9601(95)00304-l
    [24]
    F.B. Baimbetov, Kh.T. Nurekenov, T.S. Ramazanov, Electrical conductivity and scattering sections of strongly coupled hydrogen plasmas, Phys. A 226 (1996) 181.10.1016/0378-4371(95)00396-7
    [25]
    L.G. Stanton, M.S. Murillo, Unified description of linear screening in dense plasmas, Phys. Rev. E 91 (2015) 033104. Pulisher's Note ibid: 91 (2015) 049901.10.1103/physreve.91.049901
    [26]
    M. Akbari-Moghanjoughi, Hydrodynamic limit of Wigner-Poisson kinetic theory: revisited, Phys. Plasmas 22 (2015) 022103.10.1063/1.4907167 Erratum ibid: 22 (2015) 039904.
    [27]
    Zh. Moldabekov, T. Schoof, P. Ludwig, M. Bonitz, T. Ramazanov, Statically screened ion potential and Bohm potential in a quantum plasma, Phys. Plasmas 22 (2015) 102104.10.1063/1.4932051
    [28]
    S.D. Baalrud, J. Daligault, Effective potential theory for transport coefficients across coupling regimes, Phys. Rev. Lett. 110 (2013) 235001.10.1103/physrevlett.110.235001
    [29]
    J. Daligault, Practical model for the self-diffusion coefficient in Yukawa one-component plasmas, Phys. Rev. E 86 (2012) 047401.10.1103/physreve.86.047401
    [30]
    S.D. Baalrud, Transport coefficients in strongly coupled plasmas, Phys. Plasmas 19 (2012) 030701.10.1063/1.3690093
    [32]
    F.B. Baimbetov, M.A. Bekenov, T.S. Ramazanov, Effective potential of a semiclassical hydrogen plasma, Phys. Lett. A 197 (1995) 157.10.1016/0375-9601(94)00918-f
    [33]
    P.K. Shukla, B. Eliasson, Novel attractive force between ions in quantum plasmas, Phys. Rev. Lett. 108 (2012) 165007.10.1103/physrevlett.108.165007
    [34]
    T.S. Ramazanov, K.N. Dzhumagulova, M.T. Gabdullin, Effective potentials for ion-ion and charge-atom interactions of dense semiclassical plasma, Phys. Plasmas 17 (2002) 042703.10.1063/1.3381078
    [35]
    Zh.A. Moldabekov, P. Ludwig, M. Bonitz, T.S. Ramazanov, Ion potential in warm dense matter: wake effects due to streaming degenerate electrons, Phys. Rev. E 91 (2015) 023102.10.1103/physreve.91.023102
    [36]
    M.H. Thoma, What can we learn from electromagnetic plasmas about the quarkgluon plasma? J. Phys. A Math. Theor. 42 (2009) 214004.10.1088/1751-8113/42/21/214004
    [37]
    S. Mrowczynski, M.H. Thoma, What do electromagnetic plasmas tell us about the Quark-Gluon plasma? Annu. Rev. Nucl. Part. Sci. 57 (2007) 61.10.1146/annurev.nucl.57.090506.123124
    [38]
    S.V. Vladimirov, Yu.O. Tyshetzskiy, On description of a collisionless quantum plasma, Phys. Usp. 54 (12) (2011) 1243–1256.10.3367/ufne.0181.201112g.1313
    [39]
    P.M. Echenique, F. Flores, R.H. Ritchie, Dynamic screening of ions in condensed matter, Solid State Phys. 43 (1990) 229.10.1016/s0081-1947(08)60325-2
    [40]
    P. Ludwig, W.J. Miloch, H. Kählert, M. Bonitz, On the wake structure in streaming complex plasmas, New J. Phys. 14 (2012) 053016.10.1088/1367-2630/14/5/053016
    [41]
    Nestro R. Arista, Werner Brandt, Dielectric response of quantum plasmas in thermal equilibrium, Phys. Rev. A 29 (1984) 1471.10.1103/physreva.29.1471
    [42]
    C. Deutsch, Nodal expansion in a real matter plasma, Phys. Lett. A 60 (1977) 317.10.1016/0375-9601(77)90111-6
    [43]
    P. Seuferling, J. Vogel, C. Toepffer, Correlations in a two-temperature plasma, Phys. Rev. A 40 (1989) 323.10.1103/physreva.40.323
    [44]
    R. Bredow, Th. Bornath, W.-D. Kraeft, Hypernetted chain calculations for multi-component and nonequilibrium, Contrib. Plasma Phys. 53 (2013) 276.10.1002/ctpp.201200117
    [45]
    W. Ebeling, The work of Baimbetov on nonideal plasmas and some recent developments, Contrib. Plasma Phys. 56 (2016) 163.10.1002/ctpp.201500118
    [46]
    G. Belyaev, M. Basko, A. Cherkasov, A. Golubev, A. Fertman, et al., Measurement of the Coulomb energy loss by fast protons in a plasma target, Phys. Rev. E 53 (1996) 2701–2707.10.1103/physreve.53.2701
    [47]
    C. Deutsch, Gc Maynard, Ion stopping in dense plasmas: a basic physics approach, Matter Radiat. Extremes 1 (2016) 277–307.10.1016/j.mre.2016.11.004
    [48]
    P.E. Grabowski, M.P. Surh, D.F. Richards, F.R. Graziani, M.S. Murillo, Molecular dynamics simulations of classical stopping power, Phys. Rev. Lett. 111 (2013) 215002.10.1103/physrevlett.111.215002
    [49]
    W.D. Kraeft, B. Strege, Energy loss of charged particles moving in a plasma, Physica A 149 (1988) 313–322.10.1016/0378-4371(88)90222-1
    [51]
    S. Atzeni, J. Meyer-ter-Vehn, The Physics of Inertial Fusion: Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter, International Series of Monographs on Physics, the Physics of Inertial Fusion, Oxford University Press, Oxford, 2004, 2009.
    [52]
    C. Wang, Y. Long, X.-T. He, J.-F. Wu, W.-H. Ye, et al., Transport properties of dense deuterium-tritium plasmas, Phys. Rev. E 88 (2013) 013106.10.1103/physreve.88.013106
    [53]
    S.X. Hu, L.A. Collins, T.R. Boehly, J.D. Kress, V.N. Goncharov, et al., First-principles thermal conductivity of warm-dense deuterium plasmas for inertial confinement fusion applications, Phys. Rev. E 89 (2014) 043105.10.1103/physreve.89.043105
    [54]
    J.D. Kress, J.S. Cohen, D.A. Horner, F. Lambert, L.A. Collins, Viscosity and mutual diffusion of deuterium-tritium mixtures in the warm-dense-matter regime, Phys. Rev. E 82 (2010) 036404.10.1103/physreve.82.036404
    [55]
    J. Daligault, Liquid-state properties of a one-component plasma, Phys. Rev. Lett. 96 (2006) 065003 10.1103/physrevlett.96.065003
    [56]
    S. Bastea, Viscosity and mutual diffusion in strongly asymmetric binary ionic mixtures, Phys. Rev. E 71 (2005) 056405.10.1103/physreve.71.056405
    [57]
    J. Wallenborn, M. Baus, Kinetic theory of the shear viscosity of a strongly coupled classical one-component plasma, Phys. Rev. A 18 (1978) 1737.10.1103/physreva.18.1737
    [58]
    L.S. Brown, D.L. Preston, R.L. Singleton Jr., Charged particle motion in a highly ionized plasma, Phys. Rep. 410 (2005) 237.10.1016/j.physrep.2005.01.001
    [59]
    L. Spitzer, Physics of Fully Ionized Gases. Interscience, N.Y, 1967, p. 586.
    [60]
    D.O. Gericke, M.S. Murillo, M. Schlanges, Dense plasma temperature equilibration in the binary collision approximation, Phys. Rev. E 65 (2009) 036418.10.1103/physreve.65.036418
    [61]
    J.N. Glosli, F. Graziani, R.M. More, M.S. Murillo, F.H. Streitz, et al., Molecular dynamics simulations of temperature equilibration in dense hydrogen, Phys. Rev. E 78 (2008) 025401.10.1103/physreve.78.025401
    [62]
    Zh.A. Moldabekov, T.S. Ramazanov, M.T. Gabdullin, Equation of state of a dense plasma: analytical results on the basis of quantum pair interaction potentials in the random phase approximation, J. Phys. Conf. Ser. 774 (2016) 012144.10.1088/1742-6596/774/1/012144
    [63]
    T.S. Ramazanov, Zh.A. Moldabekov, M.T. Gabdullin, Interaction between ions in hot dense plasma via screened Cornell potential, Phys. Plasmas 23 (2016) 042703.10.1063/1.4945648
    [64]
    T.S. Ramazanov, S.K. Kodanova, M.K. Issanova, N.K. Bastykova, Zh.A. Moldabekov, The modern information technologies and visualization methods for analysis of computer simulation results for complex plasma, Commun. Comput. Phys. 15 (2014) 981–995.10.4208/cicp.140313.070613s
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)

    Article Metrics

    Article views (65) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return