Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 2 Issue 5
Sep.  2017
Turn off MathJax
Article Contents
Zheng Wanguo, Wei Xiaofeng, Zhu Qihua, Jing Feng, Hu Dongxia, Yuan Xiaodong, Dai Wanjun, Zhou Wei, Wang Fang, Xu Dangpeng, Xie Xudong, Feng Bin, Peng Zhitao, Guo Liangfu, Chen Yuanbin, Zhang Xiongjun, Liu Lanqin, Lin Donghui, Dang Zhao, Xiang Yong, Zhang Rui, Wang Fang, Jia Huaiting, Deng Xuewei. Laser performance upgrade for precise ICF experiment in SG-Ⅲ laser facility[J]. Matter and Radiation at Extremes, 2017, 2(5). doi: 10.1016/j.mre.2017.07.004
Citation: Zheng Wanguo, Wei Xiaofeng, Zhu Qihua, Jing Feng, Hu Dongxia, Yuan Xiaodong, Dai Wanjun, Zhou Wei, Wang Fang, Xu Dangpeng, Xie Xudong, Feng Bin, Peng Zhitao, Guo Liangfu, Chen Yuanbin, Zhang Xiongjun, Liu Lanqin, Lin Donghui, Dang Zhao, Xiang Yong, Zhang Rui, Wang Fang, Jia Huaiting, Deng Xuewei. Laser performance upgrade for precise ICF experiment in SG-Ⅲ laser facility[J]. Matter and Radiation at Extremes, 2017, 2(5). doi: 10.1016/j.mre.2017.07.004

Laser performance upgrade for precise ICF experiment in SG-Ⅲ laser facility

doi: 10.1016/j.mre.2017.07.004
More Information
  • Corresponding author: *Corresponding author. Laser Fusion Research Center, China Academy of Engineering Physics, P.O. Box 919-988, Mianyang, 621900, China. E-mail address: xwdeng@caep.cn (X.W. Deng).
  • Received Date: 2017-05-21
  • Accepted Date: 2017-07-21
  • Publish Date: 2017-09-15
  • The SG-Ⅲ laser facility (SG-Ⅲ) is the largest laser driver for inertial confinement fusion (ICF) researches in China, which has 48 beamlines and can deliver 180 kJ ultraviolet laser energy in 3 ns. In order to meet the requirements of precise physics experiments, some new functionalities need to be added to SG-Ⅲ and some intrinsic laser performances need upgrade. So at the end of SG-Ⅲ's engineering construction, the 2-year laser performance upgrade project started. This paper will introduce the newly added functionalities and the latest laser performance of SG-Ⅲ. With these function extensions and performance upgrade, SG-Ⅲ is now fully prepared for precise ICF experiments and solidly paves the way towards fusion ignition.
  • loading
  • [1]
    Dunne, M., 2012. Laser Inertial Fusion Energy (LIFE) – a path to US energy independence. In: Annual Meeting of the Southern States Energy Board.
    [2]
    Lindl, J.D., Amendt, P., Berger, R.L., Glendinning, S.G., Glenzer, S.H., et al., 2004. The physics basis for ignition using indirect-drive targets on the National Ignition Facility. Phys. Plasmas 11 (2), 339–491.10.1063/1.1578638
    [3]
    Rosen, M.D., Lindl, J.D., Kilkenny, J.D., 1994. Recent results on Nova. J. Fusion Energy 13 (2–3), 155–166.10.1007/bf02213953
    [4]
    Boehly, T.R., Craxton, R.S., Hinterman, T.H., Kelly, J.H., Kessler, T.J., et al., 1995. The upgrade to the OMEGA laser system. Rev. Sci. Instrum. 88 (l), 506–510. 10.1063/1.1146333
    [5]
    Haynam, C.A., Wegner, P.J., Auerbach, J.M., Bowers, M.W., Dixit, S.N., et al., 2007. National Ignition Facility laser performance status. Appl. Opt. 46 (16), 3276–3303.10.1364/ao.46.003276
    [6]
    National Ignition Campaign Execution Plan, UCRL-AR-213718, NIF-0111975-AA, Rev. 0., June 2005.
    [7]
    National Ignition Campaign Program Completion Report, LLNL-TR-637982, September 30, 2012. .
    [8]
    Ebradt, J., Chaput, J.M., 2010. LMJ on its way to fusion. J. Phys. Conf. Ser. 244, 032017.10.1088/1742-6596/244/3/032017
    [9]
    He, X.T., Zhang, W.Y., Ye, C.F., 7–11 March 2005. Inertial fusion energy research progress in China. In: 6th Symposium on Current Trends in International Fusion Research: A Review, Washington, D.C., USA.
    [10]
    Lin, Z.Q., Deng, X.M., Fan, D.Y., Wang, S.J., Chen, S.H., et al., 1999. SG-Ⅱ laser elementary research and precision SG-Ⅱ program. Fusion Eng. Des. 44, 61–66.10.1016/s0920-3796(98)00308-1
    [11]
    Li, P., Jing, F., Wu, D.S., Zhao, R.C., Li, H., et al., 2012. Power balance on the SG-Ⅲ prototype facility. Proc. SPIE 8433, 843317.
    [12]
    Zheng, W.G., Wei, X.F., Zhu, Q.H., Jing, F., Hu, D., et al., 2016. Laser performance of the SG-Ⅲ laser facility. High Power Laser Sci. Eng. 4, e21.10.1017/hpl.2016.20
    [13]
    Moody, J.D., MacGowan, B.J., Rothenberg, J.E., Berger, R.L., Divol, L., et al., 2001. Backscatter reduction using combined spatial, temporal, and polarization beam smoothing in a long-scale-length laser plasma. Phys. Rev. Lett. 86 (13), 2810–2813.10.1103/physrevlett.86.2810
    [14]
    Kyrala, G.A., Seifter, A., Kline, J.L., Goldman, S.R., Batha, S.H., et al., 2011. Tuning indirect-drive implosions using cone power balance. Phys. Plasmas 18 (7), 072703.10.1063/1.3598179
    [15]
    Li, C.K., Seguin, F.H., Frenje, J.A., Goldman, S.R., Batha, S.H., et al., 2004. Effects of nonuniform illumination on implosion asymmetry in direct-drive inertial confinement fusion. Phys. Rev. Lett. 92 (20), 205001.10.1103/physrevlett.92.205001
    [16]
    Fuchs, J., Labaune, C., Depierreux, S., Baldis, H.A., et al., et al., 2000. Modification of spatial and temporal gains of stimulated Brillouin and Raman scattering by polarization smoothing. Phys. Rev. Lett. 84 (14), 3089–3092.10.1103/physrevlett.84.3089
    [17]
    Malone, R.M., Bower, J.R., Bradley, D.K., Tunnell, T.W., 2004. Imaging VISAR diagnostic for the National Ignition Facility (NIF). In: SPIE High-speed Photography and Photonics Conference Alexandria, VA, United States, UCRL-CONF-206587.
    [18]
    Zhang, R., Li, M.Z., Wang, J.J., Duan, W., Wang, F., et al., 2011. Experimental research on an arbitrary pulse generation system for imaging VISAR. Opt. Laser Technol. 43, 179–182.10.1016/j.optlastec.2010.06.010
    [19]
    Glenzer, S.H., Macgowan, B.J., Michel, P., Meezan, N.B., Suter, L.J., et al., 2010. Symmetric inertial confinement fusion implosions at ultra-high laser energies. Science 327 (5970), 1228–1231.10.1126/science.1185634
    [20]
    Lindl, J., 1995. Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys. Plasmas 2, 3933.10.1063/1.871025
    [21]
    Spaeth, M.L., Manes, K.R., Bowers, M., Celliers, P., Nicola, J.M.D., et al., 2016. National Ignition Facility laser system performance. Fusion Sci. Technol. 69, 366–394.10.13182/fst15-136
    [22]
    Hu, D.X., Dong, J., Xu, D.P., Huang, X., Zhou, W., et al., 2015. Generation and measurement of complex laser pulse shapes in the SG-Ⅲ laser facility. Chin. Opt. Lett. 13 (4), 041406.10.3788/col201513.041406
    [23]
    Néauport, J., Ribeyre, X., Daurios, J., Valla, D., Lavergne, M., et al., 2003. Design and optical characterization of a large continuous phase plate for laser integration line and laser megajoule facilities. Appl. Opt. 42 (23), 77–82.10.1364/ao.42.002377
    [24]
    Skupsky, S., Short, R.W., Kessler, T., Craxton, R.S., 1989. Improved laser-beam uniformity using the angular dispersion of frequency-modulated light. J. Appl. Phys. 66 (34), 56–62.10.1063/1.344101
    [25]
    Rothenberg, J.E., 2000. Polarization beam smoothing for inertial confinement fusion. J. Appl. Phys. 87, 3654–3662.10.1063/1.372395
    [26]
    Murray, J.R., Ray Smith, J., Ehrlich, R.B., Kyrazis, D.T., Thompson, C.E., et al., 1989. Experimental observation and suppression of transverse stimulated Brillouin scattering in large optical components. J. Opt. Soc. Am. B 6 (12), 2402–2411.10.1364/josab.6.002402
    [27]
    Regan, S.P., Marozas, J.A., Craxton, R.S., Kelly, J.H., Donaldson, W.R., et al., 2005. Performance of 1-THz-bandwidth, two-dimensional smoothing by spectral dispersion and polarization smoothing of high-power, solid-state laser beams. J. Opt. Soc. Am. B 22 (5), 998–1002.10.1364/josab.22.000998
    [28]
    Boehly, T.R., Smalyuk, V.A., Meyerhofer, D.D., Knauer, J.P., Bradley, D.K., et al., 1999. Reduction of laser imprinting using polarization smoothing on a solid-state fusion laser. J. Appl. Phys. 85, 3444–3662.10.1063/1.369702
    [29]
    Dixit, S.N., Munro, D., Murray, J.R., Nostrand, M., Wegner, P.J., et al., 2005. Polarization Smoothing on the National Ignition Facility. UCRL-PROC-215251. Inertial Fusion Science and Applications.
    [30]
    Huang, X.X., Jia, H.T., Zhou, W., Zhang, F., Guo, H., et al., 2015. Experimental demonstration of polarization smoothing in a convergent beam. Appl. Opt. 54 (33), 9786–9790.10.1364/ao.54.009786
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(26)

    Article Metrics

    Article views (130) PDF downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return