Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 2 Issue 5
Sep.  2017
Turn off MathJax
Article Contents
Sun Qizhi, Yang Xianjun, Jia Yuesong, Li Lulu, Fang Dongfan, Zhao Xiaoming, Qin Weidong, Liu Zhengfen, Liu Wei, Li Jun, Chi Yuan, Wang Xiaoguang. Formation of Field Reversed Configuration (FRC) on the Yingguang-I device[J]. Matter and Radiation at Extremes, 2017, 2(5). doi: 10.1016/j.mre.2017.07.003
Citation: Sun Qizhi, Yang Xianjun, Jia Yuesong, Li Lulu, Fang Dongfan, Zhao Xiaoming, Qin Weidong, Liu Zhengfen, Liu Wei, Li Jun, Chi Yuan, Wang Xiaoguang. Formation of Field Reversed Configuration (FRC) on the Yingguang-I device[J]. Matter and Radiation at Extremes, 2017, 2(5). doi: 10.1016/j.mre.2017.07.003

Formation of Field Reversed Configuration (FRC) on the Yingguang-I device

doi: 10.1016/j.mre.2017.07.003
More Information
  • Corresponding author: *Corresponding author. Institute of Fluid Physics, China Academy of Engineering Physics, Miangyang 621900, China. E-mail address: jysniper@163.com (Y.S. Jia).
  • Received Date: 2016-07-17
  • Accepted Date: 2017-07-18
  • Publish Date: 2017-09-15
  • As a hybrid approach to realizing fusion energy, Magnetized Target Fusion (MTF) based on the Field Reversed Configuration (FRC), which has the plasma density and confinement time in the range between magnetic and inertial confinement fusion, has been recently widely pursued around the world. To investigate the formation and confinement of the FRC plasma injector for MTF, the Yingguang-I, which is an FRC test device and contains a multi-bank program-discharged pulsed power sub-system, was constructed at the Institute of Fluid Physics (IFP), China. This paper presents the pulsed power components and their parameters of the device in detail, then gives a brief description of progress in experiments of FRC formation. Experimental results of the pulsed power sub-system show that the peak current/magnetic field of 110 kA/0.3 T, 10 kA/1.2 T and 1.7 MA/3.4 T were achieved in the bias, mirror and θ-pinch circuits with quarter cycle of 80 μs, 700 μs and 3.8 μs respectively. The induced electric field in the neutral gas was greater than 0.25 kV/cm when the ionization bank was charged to 70 kV. With H2 gas of 8 Pa, the plasma target of density 1016 cm−3, separatrix radius 4 cm, half-length 17 cm, equilibrium temperature 200 eV and lifetime 3 μs (approximately the half pulse width of the reversed field) have been obtained through the θ-pinch method when the bias, mirror, ionization and θ-pinch banks were charged to 5 kV, 5 kV, 55 kV and ±45 kV respectively. The images from the high-speed end-on framing camera demonstrate the formation processes of FRC and some features agree well with the results with the two-dimension magneto hydrodynamics code (2D-MHD).
  • loading
  • [1]
    Kishimoto, H., Ishida, S., Kikuchi, M., Ninomiya, H., 2005. Advanced tokamak research on JT-60. Nucl. Fusion 45, 986.10.1088/0029-5515/45/8/026
    [2]
    Hurricane, O.A., Callahan, D.A., Casey, D.T., Celliers, P.M., Cerjan, C., et al., 2014. Fuel gain exceeding unity in an inertially confined fusion implosion. Nature 506, 343–348.10.1038/nature13008
    [3]
    Lindemuth, I.R., Reinovsky, R.E., Chrien, R.E., Christian, J.M., Ekdahl, C.A., et al., 1995. Target plasma formation for magnetic compression/magnetized target fusion. Phys. Rev. Lett. 75, 1953.10.1103/physrevlett.75.1953
    [4]
    Intrator, T.P., Park, J.Y., Degnan, J.H., Furno, I., Grabowski, C., et al., 2004. A high-density field reversed configuration plasma for magnetized target fusion. IEEE Trans. Plasma Sci. 32, 152–160.10.1109/tps.2004.823974
    [5]
    Steinhauer, L.C., 2011. Review of field-reversed configurations. Phys. Plasmas 18, 070501.10.1063/1.3613680
    [6]
    Tuszewski, M., 1988. Field reversed configurations. Nucl. Fusion 28, 2033.10.1088/0029-5515/28/11/008
    [7]
    Finn, J.M., Sudan, R.N., 1982. Field-reversed configurations with a component of energetic particles. Nucl. Fusion 22, 1443.10.1088/0029-5515/22/11/004
    [8]
    Armstrong, W.T., Linford, R.K., Lipson, J., Platts, D.A., Sherwood, E.G., 1981. Field-reversed experiments (FRX) on compact toroids. Phys. Fluids 24, 2068.10.1063/1.863303
    [9]
    Siemon, R.E., Armstrong, W.T., Bartsch, R.R., 1983. Experimental studies of field-reversed-configuration (FRC) confinement in FRX-C. In: Plasma Physics and Controlled Nuclear Fusion Research. , Vol. 2. IAEA, Vienna, p. 283.
    [10]
    Intrator, T., Zhang, S.Y., Degnan, J.H., Furno, I., Grabowski, C., et al., 2004. A high density field reversed configuration (FRC) target for magnetized target fusion: first internal profile measurements of a high density FRC. Phys. Plasmas 11, 2580.10.1063/1.1689666
    [11]
    J.H. Degnan, D.J. Amdahl, M. Domonkos, et al., Recent Magneto-Inertial Fusion Experiments on FRCHX, LA-UR-13-20426.
    [12]
    Wurden, G.A., Hsu, S.C., Intrator, T.P., et al., 2016. Magneto-inertial fusion. J. Fusion Energy 35, 69–77.10.1007/s10894-015-0038-x
    [13]
    Kumashiro, S., Takahashi, T., Ooi, M., Takahashi, T.S., Shimamura, S., et al., 1993. Sources of fluctuating field on field-reversed configuration plasma. J. Phys. Soc. Jpn. 62, 1539.10.1143/jpsj.62.1539
    [14]
    Ono, Y., Morita, A., Katsurai, M., Yamada, M., 1993. Experimental investigation of three-dimensional magnetic reconnection by use of two colliding spheromaks. Phys. Fluid B 5, 3691.10.1063/1.860840
    [15]
    Kawamori, E., Ono, Y., 2005. Effect of Ion Skin Depth on Relaxation of Merging Spheromaks to a Field-Reversed Configuration. Phys. Rev. Lett. 95, 085003.10.1103/physrevlett.95.085003
    [16]
    Yamada, M., Ji, H., Hsu, S., Carter, T., Kulsrud, R., et al., 1997. Study of driven magnetic reconnection in a laboratory plasma. Phys. Plasmas 4, 1936.10.1063/1.872336
    [17]
    Binderbauer, M.W., Guo, H.Y., Tuszewski, M., et al., 2010. Dynamic formation of a hot field reversed configuration with improved confinement by supersonic merging of two colliding high-β compact toroids. Phys. Rev. Lett. 105, 045003.
    [18]
    Tuszewski, M., Smirnov, A., Thompson, M.C., et al., 2012. Field Reversed Configuration confinement enhancement through edge biasing and neutral beam injection. PRL 108, 255008.10.1103/physrevlett.108.255008
    [19]
    Razin, Y., December 2014. A direct fusion drive for rocket propulsion. Acta Astronaut. 105 (1), 145–155.10.1016/j.actaastro.2014.08.008
    [20]
    Hoffman, A.L., Guo, H.Y., Slough, J.T., Tobin, S.J., Schrank, L.S., et al., 2002. The TCS rotating magnetic field FRC current-drive experiment. Fusion Sci. Technol. 41, 92.10.13182/fst02-a205
    [21]
    Guo, H.Y., Hoffman, A.L., Milroy, R.D., 2007. Rotating magnetic field current drive of high-temperature field reversed configurations with high ζ scaling. Phys. Plasmas 14, 112502.10.1063/1.2801481
    [22]
    Munsat, T., Ellison, C.L., Light, A., Nuger, J., Willcockson, W., et al., 2008. The colorado FRC experiment. J. Fusion Energy 27, 82.10.1007/s10894-007-9108-z
    [23]
    Harris, W.S., Trask, E., Roche, T., Garate, E.P., Heidbrink, W.W., et al., 2009. Ion flow measurements and plasma current analysis in the Irvine Field Reversed Configuration. Phys. Plasmas 16, 112509.10.1063/1.3265961
    [24]
    Qi-Zhi Sun, Dong-Fan Fang, Wei Liu, Wei-Dong Qing, Yue-Song Jia, et al., 2013. Physical design of the Yingguang-I device. Acta Phys. Sin. 62, 78407.
    [25]
    Taccetti, J.M., Intrator, T.P., Wurden, G.A., Zhang, S.Y., Aragonez, R., et al., 2003. FRX-L: a field-reversed configuration plasma injector for magnetized target fusion. Rev. Sci. Instrum. 74, 4314–4323.10.1063/1.1606534
    [26]
    Cohen, S.A., Berlinger, B., Brunkhorst, C., Brooks, A., Ferraro, N., et al., 2007. Formation of collisionless high-β plasmas by odd-parity rotating magnetic fields. Phys. Rev. Lett. 98, 145002.10.1103/physrevlett.98.145002
    [27]
    Laberge, M., 2008. An acoustically driven magnetized target fusion reactor. J. Fusion Energy 27, 65–68.10.1007/s10894-007-9091-4
    [28]
    Wurden, G.A., Schoenberg, K.F., Siemon, R.E., Tuszewski, M., Wysocki, F.J., et al., 1999. Magnetized target fusion: a burning FRC plasma in an imploded metal can. J. Plasma Fusion Res. 2, 238–241.
    [29]
    Laberge, M., 2009. Experimental results for an acoustic driver for MTF. J. Fusion Energy 28, 179–182.10.1007/s10894-008-9181-y
    [30]
    Hsu, S.C., Awe, T.J., Brockington, S., Case, A., Cassibry, J.T., et al., 2012. Spherically imploding plasma liners as a standoff driver for magnetoinertial fusion. IEEE Trans. Plasma Sci. 40, 1287–1298.10.1109/tps.2012.2186829
    [31]
    Grabowski, C., Degnan, J.H., Amdahl, D.J., Domonkos, M., Ruden, E.L., et al., 2014. Addressing short trapped-flux lifetime in high-density field-reversed configuration plasmas in FRCHX. IEEE Trans. Plasma Sci. 42, 1179–1188.10.1109/tps.2014.2305402
    [32]
    Guo, H.Y., Binderbauer, M.W., Barnes, D., Putvinski, S., Rostoker, N., et al., 2011. Formation of a long-lived hot field reversed configuration by dynamically merging two colliding high-β compact toroidsa. Phys. Plasmas 18, 056110.10.1063/1.3574380
    [33]
    Slutz, S.A., Herrmann, M.C., Vesey, R.A., Sefkow, A.B., Sinars, D.B., et al., 2010. Pulsed-power-driven cylindrical liner implosions of laser preheated fuel magnetized with an axial fielda. Phys. Plasmas 17, 056303.10.1063/1.3333505
    [34]
    Laberge, M., Howard, S., Richardson, D., Froese, A., Suponitsky, V., et al., 2013. Acoustically driven magnetized target fusion. In: IEEE 25th Symposium on Fusion Engineering, vol 42, .
    [35]
    Fang, D.F., Sun, Q.Z., Zhao, X.M., Jia, Y.S., 2014. Design of a fully-fiber multi-chord interferometer and a new phase-shift demodulation method for field-reversed configuration. Rev. Sci. Instrum. 85, 053510.10.1063/1.4875584
    [36]
    Li, L.L., Zhang, H., Yang, X.J., 2014. Two-dimensional magneto-hydrodynamic description of field reversed configuration. Acta Phys. Sin. 63, 165202.
    [37]
    L.L. Li, H. Zhang, X.J. Yang, Optimization of Field Reversed Configuration for “Ying-Guang 1”, High Power Laser and Particle Beams 27 045006 (2015).10.3788/hplpb20152704.45006
    [38]
    Li, L.L., Zhang, H., Yang, X.J., 2015. Translation process of field reversed configuration. Acta Phys. Sin. 64, 125202.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)  / Tables(3)

    Article Metrics

    Article views (110) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return