Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 2 Issue 5
Sep.  2017
Turn off MathJax
Article Contents
Tripathi V.K., Liu Tung-Chang, Shao Xi. Laser radiation pressure proton acceleration in gaseous target[J]. Matter and Radiation at Extremes, 2017, 2(5). doi: 10.1016/j.mre.2017.07.001
Citation: Tripathi V.K., Liu Tung-Chang, Shao Xi. Laser radiation pressure proton acceleration in gaseous target[J]. Matter and Radiation at Extremes, 2017, 2(5). doi: 10.1016/j.mre.2017.07.001

Laser radiation pressure proton acceleration in gaseous target

doi: 10.1016/j.mre.2017.07.001
More Information
  • Corresponding author: *Corresponding author. E-mail address: tcliu@umd.edu (T.-C. Liu).
  • Received Date: 2017-03-02
  • Accepted Date: 2017-07-03
  • Available Online: 2021-12-07
  • Publish Date: 2017-09-15
  • An analytical model for hole boring proton acceleration by a circularly-polarized CO2 laser pulse in a gas jet is developed. The plasma density profile near the density peak is taken to be rectangular, with inner region thickness l around a laser wavelength and density 10% above the critical, while the outside density is 10% below the critical. On the rear side, plasma density falls off rapidly to a small value. The laser suffers strong reflection from the central region and, at normalized amplitude a01, creates a double layer. The space charge field of the double layer, moving with velocity vfz^, reflects up-stream protons to 2vf velocity, incurring momentum loss at a rate comparable to radiation pressure. Reflection occurs for vfωpzflm/mp, where m and mp are the electron and proton masses, zf is the distance traveled by the compressed electron layer and ωp is the plasma frequency. For Gaussian temporal profile of the laser and parabolic density profile of the upstream plasma, the proton energy distribution is narrowly peaked.
  • loading
  • [1]
    Robson, L., Simpson, P.T., Clarke, R.J., Ledingham, K.W.D., Lindau, F., et al., 2007. Scaling of proton acceleration driven by petawatt-laser–plasma interactions. Nat. Phys. 3, 58–62.10.1038/nphys476
    [2]
    Fuchs, J., Antici, P., d'Humières, E., Lefebvre, E., Borghesi, M., et al., 2006. Laser-driven proton scaling laws and new paths towards energy increase. Nat. Phys. 2, 48–54.10.1038/nphys199
    [3]
    Pukhov, A., 2001. Three-dimensional simulations of ion acceleration from a foil irradiated by a short-pulse laser. Phys. Rev. Lett. 86, 3562–3565.10.1103/PhysRevLett.86.3562
    [4]
    Hegelich, B.M., Albright, B.J., Cobble, J., Flippo, K., Letzring, S., et al., 2006. Laser acceleration of quasi-monoenergetic MeV ion beams. Nature 439, 441–444.10.1038/nature04400
    [5]
    Wei, M.S., Mangles, S.P.D., Najmudin, Z., Walton, B., Gopal, A., et al., 2004. Ion acceleration by collisionless shocks in high-intensity-laser-underdense-plasma interaction. Phys. Rev. Lett. 93, 155003.10.1103/PhysRevLett.93.155003
    [6]
    Fiuza, F., Stockem, A., Boella, E., Fonseca, R.A., Silva, L.O., et al., 2013. Ion acceleration from laser-driven electrostatic shocks. Phys. Plasmas 20, 056304.10.1063/1.4801526
    [7]
    Yan, X.Q., Lin, C., Sheng, Z.M., Guo, Z.Y., Liu, B.C., et al., 2008. Generating high-current monoenergetic proton beams by a circularly polarized laser pulse in the phase-stable acceleration regime. Phys. Rev. Lett. 100, 135003.10.1103/PhysRevLett.100.135003
    [8]
    Tripathi, V.K., Liu, C.S., Shao, X., Eliasson, B., Sagdeev, R.Z., 2009. Laser acceleration of monoenergetic protons in a self-organized double layer from thin foil. Plasma Phys. Control. Fusion 51, 024014.10.1088/0741-3335/51/2/024014
    [9]
    Henig, A., Steinke, S., Schnürer, M., Sokollik, T., Hörlein, R., et al., 2009. Radiation-pressure acceleration of ion beams driven by circularly polarized laser pulses. Phys. Rev. Lett. 103, 245003.10.1103/PhysRevLett.103.245003
    [10]
    Jung, D., Yin, L., Albright, B.J., Gautier, D.C., Hörlein, R., et al., 2011. Monoenergetic ion beam generation by driving ion solitary waves with circularly polarized laser light. Phys. Rev. Lett. 107, 115002.10.1103/PhysRevLett.107.115002
    [11]
    Qiao, B., Zepf, M., Borghesi, M., Geissler, M., 2009. Stable GeV ion-beam acceleration from thin foils by circularly polarized laser pulses. Phys. Rev. Lett. 102, 145002.10.1103/PhysRevLett.102.145002
    [12]
    Liu, T.-C., Shao, X., Liu, C.-S., He, M., Eliasson, B., et al., 2013. Generation of quasi-monoenergetic protons from thin multi-ion foils by a combination of laser radiation pressure acceleration and shielded Coulomb repulsion. New J. Phys. 15, 025026.10.1088/1367-2630/15/2/025026
    [13]
    Eliasson, B., 2014. Ion shock acceleration by large amplitude slow ion acoustic double layers in laser-produced plasmas. Phys. Plasmas 21, 023111.10.1063/1.4866240
    [14]
    Najmudin, Z., Palmer, C.A.J., Dover, N.P., Pogorelsky, I., Babzien, M., et al., 2011. Observation of impurity free monoenergetic proton beams from the interaction of a CO2 laser with a gaseous target. Phys. Plasmas 18, 056705.10.1063/1.3562926
    [15]
    Palmer, C.A.J., Dover, N.P., Pogorelsky, I., Babzien, M., Dudnikova, G.I., et al., 2011. Monoenergetic proton beams accelerated by a radiation pressure driven shock. Phys. Rev. Lett. 106, 014801.10.1103/PhysRevLett.106.014801
    [16]
    Haberberger, D., Tochitsky, S., Fiuza, F., Gong, C., Fonseca, R.A., et al., 2012. Collisionless shocks in laser-produced plasma generate monoenergetic high-energy proton beams. Nat. Phys. 8, 95–99.10.1038/nphys2130
    [17]
    Robinson, A.P.L., Gibbon, P., Zepf, M., Kar, S., Evans, R.G., et al., 2009. Relativistically correct hole-boring and ion acceleration by circularly polarized laser pulses. Plasma Phys. Control. Fusion 51, 024004.10.1088/0741-3335/51/2/024004
    [18]
    Macchi, A., Benedetti, C., 2010. Ion acceleration by radiation pressure in thin and thick targets. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrom. Detect. Assoc. Equip. 620, 41–45.10.1016/j.nima.2010.01.057
    [19]
    Levy, M.C., Wilks, S.C., Tabak, M., Baring, M.G., 2013. Conservation laws and conversion efficiency in ultraintense laser-overdense plasma interactions. Phys. Plasmas 20, 103101.10.1063/1.4821607
    [20]
    Ji, L., Pukhov, A., Shen, B., 2014. Ion acceleration in the ‘dragging field’ of a light-pressure-driven piston. New J. Phys. 16, 063047.10.1088/1367-2630/16/6/063047
    [21]
    Yu, L.L., Xu, H., Wang, W.M., Sheng, Z.M., Shen, B.F., et al., 2010. Generation of tens of GeV quasi-monoenergetic proton beams from a moving double layer formed by ultraintense lasers at intensity 1021–1023 W ·cm−2. New J. Phys. 12, 045021.10.1088/1367-2630/12/4/045021
    [22]
    Zheng, F.L., Wang, H.Y., Yan, X.Q., Tajima, T., Yu, M.Y., et al., 2012. Sub-TeV proton beam generation by ultra-intense laser irradiation of foil-and-gas target. Phys. Plasmas 19, 023111.10.1063/1.3684658
    [23]
    Passoni, M., Sgattoni, A., Prencipe, I., Fedeli, L., Dellasega, D., et al., 2016. Toward high-energy laser-driven ion beams: nanostructured double-layer targets. Phys. Rev. Accel. Beams 19, 061301.10.1103/PhysRevAccelBeams.19.061301
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (83) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return