Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 2 Issue 4
Jul.  2017
Turn off MathJax
Article Contents
Spielman R.B., Froula D.H., Brent G., Campbell E.M., Reisman D.B., Savage M.E., Shoup M.J., Stygar W.A., Wisher M.L.. Conceptual design of a 15-TW pulsed-power accelerator for high-energy-density—physics experiments[J]. Matter and Radiation at Extremes, 2017, 2(4). doi: 10.1016/j.mre.2017.05.002
Citation: Spielman R.B., Froula D.H., Brent G., Campbell E.M., Reisman D.B., Savage M.E., Shoup M.J., Stygar W.A., Wisher M.L.. Conceptual design of a 15-TW pulsed-power accelerator for high-energy-density—physics experiments[J]. Matter and Radiation at Extremes, 2017, 2(4). doi: 10.1016/j.mre.2017.05.002

Conceptual design of a 15-TW pulsed-power accelerator for high-energy-density—physics experiments

doi: 10.1016/j.mre.2017.05.002
More Information
  • Corresponding author: *Corresponding author. E-mail address: rbspielman@me.com (R.B. Spielman).
  • Received Date: 2017-04-26
  • Accepted Date: 2017-05-31
  • Publish Date: 2017-07-15
  • We have developed a conceptual design of a 15-TW pulsed-power accelerator based on the linear-transformer-driver (LTD) architecture described by Stygar [W. A. Stygar et al., Phys. Rev. ST Accel. Beams 18, 110401 (2015)]. The driver will allow multiple, high-energy-density experiments per day in a university environment and, at the same time, will enable both fundamental and integrated experiments that are scalable to larger facilities. In this design, many individual energy storage units (bricks), each composed of two capacitors and one switch, directly drive the target load without additional pulse compression. Ten LTD modules in parallel drive the load. Each module consists of 16 LTD cavities connected in series, where each cavity is powered by 22 bricks connected in parallel. This design stores up to 2.75 MJ and delivers up to 15 TW in 100 ns to the constant-impedance, water-insulated radial transmission lines. The transmission lines in turn deliver a peak current as high as 12.5 MA to the physics load. To maximize its experimental value and flexibility, the accelerator is coupled to a modern, multibeam laser facility (four beams with up to 5 kJ in 10 ns and one beam with up to 2.6 kJ in 100 ps or less) that can provide auxiliary heating of the physics load. The lasers also enable advanced diagnostic techniques such as X-ray Thomson scattering and multiframe and three-dimensional radiography. The coupled accelerator-laser facility will be the first of its kind and be capable of conducting unprecedented high-energy-density–physics experiments.
  • loading
  • [1]
    M.E. Savage, L.F. Bennett, D.E. Bliss, W.T. Clark, R.S. Coats, et al., An overview of pulse compression and power flow in the upgraded Z pulsed power driver in: E. Schamiloglu, F. Peterkin (Eds.), 16th IEEE International Pulsed Power Conference, vol. 2, IEEE, New York, 2007, p. 979. http://ieeexplore.ieee.org/document/4652354/.
    [2]
    M.E. Savage, K.R. LeChien, M.R. Lopez, B.S. Stoltzfus, W.A. Stygar, et al., Status of the Z pulsed power driver, in: 18th IEEE International Pulsed Power Conference, Omnipress, Piscataway, NJ, 2011, p. 983. http://ieeexplore.ieee.org/document/6191629/.
    [3]
    D.B. Sinars, G.R. Bennett, D.F. Wenger, M.E. Cuneo, D.L. Hanson, et al., Monochromatic X-ray imaging experiments on the sandia national laboratories Z facility (invited), Rev. Sci. Instrum. 75 (2004) 3672.10.1063/1.1779607
    [4]
    S.A. Slutz, M.C. Herrmann, R.A. Vesey, A.B. Sefkow, D.B. Sinars, et al., Pulsed-power-driven cylindrical liner implosions of laser preheated fuel magnetized with an axial field, Phys. Plasmas 17 (2010) 056303.10.1063/1.3333505
    [5]
    M.G. Mazarakis, R.B. Spielman, A compact, high-voltage E-beam pulser in: C. Stalling, H. Kirbie (Eds.), 12th IEEE International Pulsed Power Conference, vol. 1, IEEE, Piscataway, NJ, 1999, p. 412. http://ieeexplore.ieee.org/document/825498/.
    [6]
    W.A. Stygar, T.J. Awe, J.E. Bailey, N.L. Bennett, E.W. Breden, et al., Conceptual designs of two petawatt-class pulsed-power accelerators for high-energy-density-physics experiments, Phys. Rev. Spec. Top.--Accel. Beams 18 (2015). 110401.10.1103/PhysRevSTAB.18.110401
    [7]
    M.L. Kiefer, M.M. Widner, Screamer—a single-line pulsed-power design tool in: P.J. Turchi, M.F. Rose (Eds.), Fifth IEEE Pulsed Power Conference, IEEE, Piscataway, NJ, 1985, p. 685. https://inis.iaea.org/search/search.aspx?orig_q=RN:18080265.
    [8]
    R.B. Spielman, Y. Gryazin, Screamer v4.0—a powerful circuit analysis code, 2015, in: IEEE Pulsed Power Conference (PPC), IEEE, Piscataway, NJ, 2015. https://www.ieee.org/conferences_events/conferences/conferencedetails/index.html?Conf_ID=33290.
    [9]
    R.B. Spielman, F. Long, T.H. Martin, J.W. Poukey, D.B. Seidel, et al., PBFA II-Z: a 20-MA driver for Z-pinch experiments in: W.L. Baker, G. Cooperstein (Eds.), Tenth IEEE International Pulsed Power Conference, vol. 1, IEEE, New York, 1995, p. 396. http://ieeexplore.ieee.org/xpl/tocresult.jsp?filter%3DAND%28p_IS_Number%3A13049%29&refinements=4226002663&pageNumber=1&resultAction=REFINE.
    [10]
    R.B. Spielman, S.F. Breeze, C. Deeney, M.R. Douglas, F. Long, et al., PBFA Z: a 20-MA Z-pinch driver for plasma radiation sources in: K. Jungwirth, J. Ullschmied (Eds.), Proceedings of the 11th International Conference on High Power Particle Beams, vol. I, Institute of Plasma Physics, Czech Academy of Sciences, Prague, Czech Republic, 1996, p. 150. http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6308264.
    [11]
    R.B. Spielman, C. Deeney, G.A. Chandler, M.R. Douglas, D.L. Fehl, et al., Z: a precision 200-TW, 2-MJ Z-pinch X-ray source, Bull. Am. Phys. Soc. 42 (1997) 1947. http://flux.aps.org/meetings/YR97/BAPSDPP97/abs/S4000002.html.
    [12]
    R.B. Spielman, W.A. Stygar, K.W. Struve, J.F. Seamen, PBFA Z: a 55 TW/4.5 MJ electrical generator in: M. Comyn, M.K. Craddock, M. Reiser, J.J. Thomson (Eds.), Proceedings of the 1997 Particle Accelerator Conference. , vol. 1, IEEE, Piscataway, NJ, 1997, p. 1235. http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6051.
    [13]
    M.E. Savage, M.G. Mazarakis, K.R. LeChien, B.S. Stoltzfus, W.A. Stygar, et al., Temporally shaped current pulses on a two-cavity linear transformer driver system in: 18th IEEE International Pulsed Power Conference, Omnipress, Piscataway, NJ, 2011, p. 844. http://ieeexplore.ieee.org/document/6191525/.
    [14]
    D.D. Bloomquist, R.W. Stinnett, D.H. McDaniel, J.R. Lee, A.W. Sharpe, et al., Saturn, a large area X-ray simulation accelerator, in: B.H. Bernstein, P.J. Turchi (Eds.), 6th IEEE Pulsed Power Conference, IEEE, New York, 1987, p. 310. R.B. Spielman, R.J. Dukart, D.L. Hanson, B.A. Hammel, W.W. Hsing, M.K. Matzen, J.L. Porter, Z-pinch experiments on Saturn at 30 TW, AIP Conf. Proc. 195 (1989) 3 10.1063/1.38844
    [15]
    K. LeChien, M. Mazarakis, W. Fowler, W. Stygar, F. Long, et al., A 1-MV, 1-MA, 0.1-Hz linear transformer driver utilizing an internal water transmission line in: 17th IEEE International Pulsed Power Conference, IEEE, Piscataway, NJ, 2009, p. 1186. http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5386430.
    [16]
    J.R. Woodworth, J.A. Alexander, F.R. Gruner, W.A. Stygar, M.J. Harden, et al., Low-inductance gas switches for linear transformer drivers, Phys. Rev. Spec. Top.--Accel. Beams 12 (2009) 060401.10.1103/PhysRevSTAB.12.060401
    [17]
    J.R. Woodworth, W.A. Stygar, L.F. Bennett, M.G. Mazarakis, H.D. Anderson, et al., New low inductance gas switches for linear transformer drivers, Phys. Rev. Spec. Top.--Accel. Beams 13 (2010) 080401.10.1103/PhysRevSTAB.13.080401
    [18]
    F. Gruner, W. Stygar, B. Stoltzfus, J. Woodworth, M. Abdalla, et al., PPPS-2013: a robust, low-inductance, low-jitter switch for petawatt-class pulsed power accelerators, in: Abstracts IEEE International Conference on Plasma Science (ICOPS), IEEE, San Francisco, CA, 2013. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6635032.
    [19]
    A.A. Kim, M.G. Mazarakis, V.A. Sinebryukhov, B.M. Kovalchuk, V.A. Visir, et al., Development and tests of fast 1-MA linear transformer driver stages, Phys. Rev. Spec. Top.--Accel. Beams 12 (2009) 050402.10.1103/physrevstab.12.050402 http://stacks.iop.org/1367-2630/13/i=8/a=085005
    [20]
    W.A. Stygar, T.C. Wagoner, H.C. Ives, Z.R. Wallace, V. Anaya, et al., Water-dielectric-breakdown relation for the design of large-area multimegavolt pulsed-power systems, Phys. Rev. Spec. Top.--Accel. Beams 9 (2006) 070401.10.1103/PhysRevSTAB.9.070401
    [21]
    W.A. Stygar, J.A. Lott, T.C. Wagoner, V. Anaya, H.C. Harjes, et al., Improved design of a high-voltage vacuum-insulator interface, Phys. Rev. ST Accel. Beams 8 (2005) 050401.10.1103/PhysRevSTAB.8.050401
    [22]
    W.A. Stygar, H.C. Ives, T.C. Wagoner, J.A. Lott, V. Anaya, et al., Flashover of a vacuum-insulator interface: a statistical model, Phys. Rev. Spec. Top.--Accel. Beams 7 (2004) 070401.10.1103/PhysRevSTAB.7.070401
    [23]
    M.E. Savage, B.S. Stoltzfus, K.N. Austin, P.A. Jones, W.A. Stygar, et al., Performance of a radial vacuum insulator stack, in: IEEE Pulsed Power Conference (PPC), IEEE, Piscataway, NJ, 2015. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=7296785.
    [24]
    M.R. Gomez, M.E. Cuneo, J.P. Davis, R.W. Lemke, R.D. McBride, et al., A systematic study of current flow and impedance behavior in the Z machine double post-hole convolute, in: 19th IEEE Pulsed Power Conference, IEEE, Piscataway, NJ, 2013. http://ieeexplore.ieee.org/document/6627397/.
    [25]
    R.B. Spielman, C. Deeney, G.A. Chandler, M.R. Douglas, D.L. Fehl, et al., Tungsten wire-array Z-pinch experiments at 200 TW and 2 MJ, Phys. Plasmas 5 (1998) 2105.10.1063/1.872881
    [26]
    M.L. Wisher, Sandia National Laboratories, Private Communication, 2016.
    [27]
    T.H. Martin, J.F. Seamen, D.O. Jobe, Energy losses in switches, in: K.R. Prestwich, W.L. Baker (Eds.), Ninth IEEE International Pulsed Power Conference, vol. 1, IEEE, New York, 1993, p. 463. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=513375.
    [28]
    C.A. Hall, J.R. Asay, M.D. Knudson, W.A. Stygar, R.B. Spielman, et al., Experimental configuration for isentropic compression of solids using pulsed magnetic loading. , Rev. Sci. Instrum. 72 (2001) 3587.10.1063/1.1394178
    [29]
    D.L. Peterson, R.L. Bowers, J.H. Brownell, C. Lund, W. Matuska, et al., Application of 2-D simulations to hollow Z-pinch implosions, AIP Conf. Proc. 409 (1997) 201.10.1063/1.53929
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(32)  / Tables(2)

    Article Metrics

    Article views (355) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return