Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 2 Issue 4
Jul.  2017
Turn off MathJax
Article Contents
Hora Heinrich, Eliezer Shalom, Nissim Noaz, Lalousis Paraskevas. Non-thermal laser driven plasma-blocks for proton boron avalanche fusion as direct drive option[J]. Matter and Radiation at Extremes, 2017, 2(4). doi: 10.1016/j.mre.2017.05.001
Citation: Hora Heinrich, Eliezer Shalom, Nissim Noaz, Lalousis Paraskevas. Non-thermal laser driven plasma-blocks for proton boron avalanche fusion as direct drive option[J]. Matter and Radiation at Extremes, 2017, 2(4). doi: 10.1016/j.mre.2017.05.001

Non-thermal laser driven plasma-blocks for proton boron avalanche fusion as direct drive option

doi: 10.1016/j.mre.2017.05.001
More Information
  • Corresponding author: *Corresponding author. E-mail address: h.hora@unsw.edu.au (H. Hora).
  • Received Date: 2016-12-10
  • Accepted Date: 2017-05-05
  • Available Online: 2021-12-07
  • Publish Date: 2017-07-15
  • Fusion energy from protons reacting with 11B, HB11, is extremely difficult or impossible when using thermal ignition by laser irradiation. This changes radically when using picosecond laser pulses with powers above petawatts dominated by nonlinear force driven ultrahigh acceleration of plasma blocks for a non-thermal initiation of igniting solid density HB11 fuel. For a cylindrical trapping of the reaction, laser produced ultrahigh magnetic fields above kiloTesla, have to be combined. The experimentally confirmed highly increased HB11 fusion gains due to avalanche reaction may lead to a scheme of an environmentally clean and economic power reactor.
  • loading
  • [1]
    E. Teller, Memoirs, Perseus Publishing, Cambridge MA, 2001, p. 344.
    [2]
    K. Ikeda, Progress in the ITER physics basis, Nucl. Fusion 47 (2007) S1–S404, 10.1088/0029-5515/47/6/E01.
    [3]
    T. Sunn Pedersen, T. Andreeva, H.-S. Bosch, S. Bozhenkov, F. Effenberg, et al., Plans for the first plasma operation of Wendelstein 7-X, Nucl. Fusion 55 (2015) 126001.
    [4]
    M. Keilhacker, Nucl. Fusion 41 (12B) (1999) B1.
    [5]
    N.G. Basov, O.N. Krokhin, in: P. Grivet, N. Bloembergen (Eds.), Proceedings of 3rd International Quantum Electronics Conference Paris 1963, vol. 2, 1964, p. 1375 (Dunod,Paris. 1964).
    [6]
    J.M. Dawson, On the production of plasma by giant pulse lasers, Phys. Fluids 7 (1964) 981.10.1063/1.1711346
    [7]
    H. Hora, Abschätzungen zur Aufheizung eines Plasmas mittels Lasern (Estmations for heating of a plasma by lasers) 1964, Report 6/23 (Institut für Plasmaphysik, Garching): Technical translation 1193 (National Research Council of Canada, Ottawa, 1965).
    [8]
    H. Hora, Laser fusion with nonlinear force driven plasma blocks: thresholds and dielectric effects, Laser Part. Beams 27 (2009) 207.10.1017/s0263034609000275
    [9]
    H. Hora, G.H. Miley, M. Ghorannviss, H. Malekynia, N. Azizi, X.-T. He, Fusion energy without radioactivity: laser ignition of solid hydrogen–boron (11) fuel, Energy Environ. Sci. 4 (2010) 478, 10.1039/B904609G.
    [10]
    M.S. Chu, Thermonuclear reaction waves at high-densities, Phys. Fluids 15 (3) (1972) 413.10.1063/1.1693924
    [11]
    J.-L. Bobin, Laser Interaction and Related Plasma Phenomena, in: H. Schwarz, H. Hora (Eds.), 1974, p. 465. Plenum, New York 1975 Vol. 3A.
    [12]
    H. Hora, R. Castillo, R.G. Clark, E.L. Kane, V.F. Lawrence, R.D.C. Miller, et al., Calculations of inertial confinement fusion gains using a collective model for reheat, bremsstrahlung and fuel depletion for high-efficient electrodynamic laser compressions, in: Proceed. 7th IAEA Conf. Plasma Phys. and Thermonucl. Fusion, Innsbruck, 23–30 August, 1978 (IAEA, Vienna, 1979), vol. III, , 1979, p. 237.
    [13]
    H. Hora, Physics of Laser Driven Plasmas, Wiley, New York, 1981.
    [14]
    H. Hora, Skin-depth theory explaining anomalous picosecond-terawatt laser plasma interaction II, Czechosl. J. Phys 53 (2003) 199.
    [15]
    P. Lalousis, H. Hora, S. Moustizis, Optimized boron fusion with magnetic trapping by laser driven plasma block initiation at nonlinear forced driven ultrahigh acceleration, Laser Part. Beams 32 (2014) 409.10.1017/s0263034614000287
    [16]
    H. Hora, P. Lalousis, S. Moustaizis, I. Földes, G.H. Miley, et al., Shock studies in nonlinear force driven laser fusion with ultrahigh plasma block acceleration, in: IAEA Proceedings Fusion Energy, San Diego Oct 2012, 2012. paper IFE/P6–03, 8 pages (IAEA Vienna 2013).
    [17]
    C. Labaune, S. Deprierraux, S. Goyon, C. Loisel, G. Yahia, et al., Fusion reactions initiated by laser-accelerated particle beams in a laser-produced plasma, Nat. Commun. 4 (2013) 2506.10.1038/ncomms3506
    [18]
    A. Picciotto, D. Margarone, A. Velyhan, P. Bellini, J. Krasa, et al., Boron-proton nuclear-fusion enhancement induced in boron-doped silicon targets by low-contrast pulsed laser, Phys. Rev. X 4 (2014) 031030.10.1103/physrevx.4.031030
    [19]
    H. Hora, G. Korn, L. Giuffrida, D. Margarone, A. Picciotto, et al., Fusion energy using avalanche increased boron reactions for bock-ignition by ultrahigh power picoseconds laser pulses, Laser Part. Beams 33 (2015) 607.10.1017/s0263034615000634
    [20]
    Heinrich Hora, Paraskevas Lalousis, Lorenzo Giuffrida, Daniele Margarone, Georg Korn, et al., Petawatt laser pulses for proton-boron high gain fusion with avalanche reactions excluding problems of nuclear radiation, in: SPIE Conf. Proceedings No. 9515a, paper 9515–9518, 2015.
    [21]
    S. Eliezer, H. Hora, G. Korn, N. Nissim, J.-M. Martinez Val, Avalanche proton-boron fusion based on elastic nuclear collisions, Phys. Plasmas 23 (050704) (2016).10.1063/1.4950824
    [22]
    J.H. Nuckolls, in: H. Hora, G.H. Miley (Eds.), Edward Teller Lectures, Imperial College Press, London and World Scientific Publishing Singapore, 2016, p. 85.
    [23]
    T.H. Maiman, Stimulated optical radiation in Ruby, Nature 187 (1960) 493.10.1038/187493a0
    [24]
    [25]
    E. Cardlodge, Phys. World 29 (No. 10) (2016) 36.
    [26]
    C. Danson, D. Hilliers, N. Hopps, D. Neely, Petawatt class lasers worldwide, High Power Laser Sci. Appl. 3 (2015) e3.10.1017/hpl.2014.52
    [27]
    S.W. Haan, T.R. Dittrich, M.M. Marinak, D.E. Hinkel, in: H. Hora, G.H. Miley (Eds.), Edward Teller Lectures, Imperial College Press, London and World Scientific Publishing Singapore, 2016, p. 262.
    [28]
    O.A. Hurricane, D.A. Callahan, D.T. Casey, P.M. Celliers, C. Cerjan, et al., Fuel gain exceeding unity in an inertially confined fusion implosion, Nature 506 (2014) 343.10.1038/nature13008
    [29]
    D.E. Hinkel, et al., High foot implosions in larger hohlraums filled with an intermediate gas fill density, IFSA Conference, Seattle, 2016, p. 163. Sept 2015 Abstracts.
    [30]
    J.-P. Leidinger, D.A. Callahan, L.F. Berzak-Hopkins, J.E. Ralph, P. Amendt, et al., NIF Rugby High Foot Campaign from the design side, J. Phys. Conf. Ser. 717 (2016) 012035.10.1088/1742-6596/717/1/012035
    [31]
    H. Hora, Laser Plasma Physics – Forces and the Nonlinearity Principle, second ed., SPIE Press, Bellingam WA, 2016.
    [32]
    [33]
    J.D. Lindl, in: H. Hora, G.H. Miley (Eds.), Edward Teller Lectures, Imperial College Press London, 2016, p. 121.
    [34]
    E. Storm, J. Lindl, E.M. Campbell, T.P. Bernat, L.W. Coleman, J.L. Emmett, et al., LLNL Livermore Report 47312, 1988.
    [35]
    H. Hora, Plasmas at High Temperature and Density, Springer, Heidelberg, 1991.
    [36]
    G.S. Fraley, F.J. Linnebur, R.J. Mason, R.L. Morse, Thermonuclear burn characteristics of compressed deuterium-tritium microspheres, Phys. Fluids 17 (1974) 474.10.1063/1.1694739
    [37]
    H. Hora, in: H. Schwarz, H. Hora (Eds.), Laser Interaction and Related Plasma Phenomena, vol. 1, 1971, p. 427. Plenum, New York.
    [38]
    [39]
    H. Hora, D. Pfirsch, in: H. Schwarz, H. Hora (Eds.), Laser Interaction and Related Plasma Phenomena, vol. 2, 1972, p. 515. Plenum, New York.
    [40]
    S. Atzeni, Thermonuclear burn performance of volume-ignited and centrally ignited bare deuterium-tritium microspheres, Jap. J. Appl. Phys. 34 (1986) 1995.
    [41]
    S. Nakai, H. Takabe, Principles of inertial confinement fusion – physics of implosion and the concept of inertial fusion energy, Rep. Progr. Phys. 59 (1996) 1071.10.1088/0034-4885/59/9/002
    [42]
    J.M. Soures, R.L. McCrory, C.P. Vernon, A. Babushkin, R.E. Bahr, et al., Phys. Fluids 31 (1996) 2884.
    [43]
    H. Takabe, M. Yamanaka, K. Mima, C. Yamanaka, H. Azechi, et al., Scalings of implosion experiments for high neutron yield, Phys. Fluids 31 (1988) 2884.10.1063/1.866997
    [44]
    E. Storm, in: Press Conference, vol. 16, LLNL, Livermore, 1986. January 1986.
    [45]
    G.G. Kochemasov, in: Arzamas-16 Conference, August 1996, 1996.
    [46]
    Y. Kitagawa, Selection of Results from Gekko II (Personal Communication), 1984.
    [47]
    Y. Kitagawa, T. Matsumoto, T. Minamihata, K. Sawai, K. Matsuo, et al., Beat-wave excitation of plasma-wave and observation of accelerated electrons, Phys. Rev. Lett. 68 (1992) 48.10.1103/physrevlett.68.48
    [48]
    R.E. Kidder, Laser compression ff matter – optical power and energy-requirements, Nucl. Fusion 14 (1974) 797.10.1088/0029-5515/14/6/005
    [49]
    S. Atzeni, Thermonuclear burn performance of volume-ignited and centrally ignited bare deuterium-tritium microspheres, Jap. J. Appl. Phys 34 (1986) 1995.
    [50]
    H. Hora, P.S. Ray, Increased nuclear fusion yields of inertially confined DT plasma due to reheat, Z. Naturf. A 33 (1978) 890.10.1515/zna-1978-0803
    [51]
    R.C. Kirkpatrick, J.A. Wheeler, The physics of Dt ignition in small fusion-targets, Nucl. Fusion 21 (1981) 389.10.1088/0029-5515/21/3/008
    [52]
    H. Hora, Extraordinary strong jump of increasing laser fusion gains experienced at volume ignition for combination with NIF experiments, Laser Part. Beams 31 (2013) 229.10.1017/s0263034613000219
    [53]
    R. Betti, A.R. Christopherson, B.K. Spears, R. Nora, A. Bose, et al., Alpha heating and burning plasmas in inertial confinement fusion, Phys. Rev. Lett. 114 (2015) 255003.10.1103/physrevlett.114.255003
    [54]
    X.T. He, J.W. Li, Z.F. Fan, L.F. Wang, J. Liu, et al., A hybrid-drive nonisobaric-ignition scheme for inertial confinement fusion, Phys. Plasmas 23 (2016) 082706.10.1063/1.4960973
    [55]
    Lan Ke, Progress in Octahedral Spherical Hohlraum Studies High Power Laser Science and Engineering Conference Suzhou March 2016, , 2016. Inv. paper A-24.
    [56]
    X.T. He, Y.S. Li, Laser interaction and related plasma phenomena, in: G.H. Miley (Ed.), AIP Conference Proceedings, No. 318, 1994, p. 334.10.1063/1.46942
    [57]
    J.M. Martinez-Val, S. Eliezer, M. Piera, Volume ignition targets for heavy-ion inertial fusion, Laser Part. Beams 12 (1994) 681.10.1017/s0263034600008533
    [58]
    S.P. Regan, V.N. Goncharov, I.V. Igumenshchev, T.C. Sangster, R. Betti, et al., Demonstration of fuel hot-spot pressure in excess of 50 Gbar for direct-drive, layered deuterium-tritium implosions on OMEGA, Phys. Rev. Lett. 117 (2016) 025001.10.1103/physrevlett.117.059903
    [59]
    H. Hora, H. Azechi, Y. Kitagawa, K. Mima, M. Murakami, et al., Measured laser fusion gains reproduced by self-similar volume compression and volume ignition for NIF conditions, J. Plasma Phys. 60 (1998) 743.10.1017/s0022377898007077
    [60]
    C. Rubbia, Heavy-ion accelerators for inertial confinement fusion, Laser Part. Beams 11 (1993) 391.10.1017/s0263034600004985
    [61]
    M. Roth, E. Brambrink, P. Audebert, A. Blazevic, R. Clarke, et al., Laser accelerated ions and electron transport in ultra-intense laser matter interaction, Laser Part. Beams 23 (2005) 95.10.1017/s0263034605050160
    [62]
    Yanxia Xu, Jiaxiang Wang, Xin Qi, Meng Li, Yifan Xing, Lei Yang, Wenjun Zhu, Plasma block acceleration via double targets driven by an ultraintense circularly polarized laser pulse, Phys. Plasmas 24 (2017) 033108.10.1063/1.4977456
    [63]
    B.Y. Sharkov, D.H.H. Hoffmann, A.A. Golubev, Yongtao Zhao, High energy density physics with intense ion beams, Matter Radiat. Extremes 1 (2016) 28.10.1016/j.mre.2016.01.002
    [64]
    [65]
    M. Tabak, J. Hammer, M.N. Glinsky, W.L. Kruer, S.C. Wilks, et al., Ignition and high-gain with ultrapowerful lasers, Phys. Plasmas 1 (1994) 1626.10.1063/1.870664
    [66]
    R.M. May, Will a large complex system be stable, Nature 238 (1972) 413.10.1038/238413a0
    [67]
    R.M. May, Lord May of Oxford Science and Policy Making, J. Proc. R. Soc. N. South Wales 144 (2011) 50.
    [68]
    H. Hora, Nonlinear confining and deconfining forces associated with interaction of laser radiation with plasma, Phys. Fluids 12 (1969) 182.10.1063/1.1692262
    [69]
    H. Hora, The transient electrodynamic forces at laser plasma interaction, Phys. Fluids 28 (1985) 3706.10.1063/1.865104
    [70]
    H. Hora, Distinguishing between thermalizing and electrodynamic coupling for laser-compressed thermonuclear reactions, Aust. J. Phys. 29 (1976) 375.10.1071/ph760375
    [71]
    R. Sauerbrey, Acceleration in femtosecond laser-produced plasmas, Phys. Plasmas 3 (1996) 4712.10.1063/1.872038
    [72]
    H. Hora, J. Badziak, M.N. Read, Y.-T. Li, T.-J. Liang, et al., Fast ignition by laser driven particle beams of very high intensity, Phys. Plasmas 14 (2007) 072701.10.1063/1.2748389
    [73]
    D. Strickland, G. Mourou, Compression of amplified chirped optical pulses, Opt. Commun. 56 (1985) 219.10.1016/0030-4018(85)90120-8
    [74]
    G. Mourou, C.P.J. Barty, M.D. Perry, Ultrahigh-intensity lasers: physics of the extreme on a tabletop, Phys. Today 51 (1) (1998) 22.10.1063/1.882131
    [75]
    J. Badziak, A.A. Kozlov, J. Makowski, P. Parys, L. Ryc, et al., Investigations of ion streams emitted from plasma produced with a high-power picosecond laser, Laser Part. Beams 17 (1999) 323.10.1017/s0263034699172197
    [76]
    H. Hora, B. Malekynia, M. Ghoranneviss, G.H. Miley, X. He, Twenty times lower ignition threshold for laser driven fusion using collective effects and the inhibition factor, Appl. Phys. Lett. 93 (2008) 011101.10.1063/1.2955839
    [77]
    M. Kouhi, M. Ghoranneviss, B. Malekynia, H. Hora, G.H. Miley, et al., Resonance effect for strong increase of fusion gains at thermal compression for volume ignition of Hydrogen Boron-11, Laser Part. Beams 29 (2011) 125.10.1017/s026303461100005x
    [78]
    P. Lalousis, H. Hora, First direct electron and ion fluid computation of high electrostatic fields in dense inhomogeneous plasmas with subsequent nonlinear laser interaction, Laser Part. Beams 1 (1983) 283.10.1017/s0263034600000355
    [79]
    H. Hora, P. Lalousis, S. Eliezer, Analysis of the inverted double-layers produced by nonlinear forces in a laser-produced plasma, Phys. Rev. Lett. 53 (1984) 1650.10.1103/physrevlett.53.1650
    [80]
    P. Lalousis, H. Hora, S. Eliezer, J.-M. Martinez-Val, S. Moustaizis, G.H. Miley, G. Mourou, Shock mechanisms by ultrahigh laser accelerated plasma blocks in solid density targets for fusion, Phys. Lett. A377 (2013) 885.10.1016/j.physleta.2013.01.037
    [81]
    S. Fujioka, Z. Zhang, K. Ishihara, K. Shigemori, Y. Hironaka, et al., Kilotesla magnetic field due to a capacitor-coil target driven by high power laser, Sci. Rep. 3 (2013) 1170, 10.1038/srep01170.
    [82]
    H. Daido, F. Miki, K. Mima, M. Fujita, K. Sawai, et al., Generation of a strong magnetic-field by an intense CO2-laser pulse, Phys. Rev. Lett. 56 (1986) 846.10.1103/physrevlett.56.846
    [83]
    J.J. Santos, M. Bailly-Grandvoux, L. Giuffrida, et al., Phys. Plasmas see Ar. Xiv 1503 (2015) 00247v1.
    [84]
    [85]
    H. Hora, P. Lalousis, S. Moustaizis, Fiber ICAN laser with exawatt-picosecond pulses for fusion without nuclear radiation problems, Laser Part. Beams 32 (2014) 63.10.1017/s0263034613000876
    [86]
    H. Hora, G.H. Miley, P. Lalousis, S. Mustaizis, K. Clayton, D. Jonas, Efficient generation of fusion flames using PW-PS laser pulses for ultrahigh acceleration of plasma blocks by nonlinear (Ponderomotive) forces, IEEE Trans. Plasma Sci. 42 (2014) 640.10.1109/tps.2014.2304558
    [87]
    M. Hohenberger, P.Y. Chang, G. Fiksel, J.P. Knauer, R. Betti, et al., Inertial confinement fusion implosions with imposed magnetic field compression using the OMEGA Laser, Phys. Plasmas 19 (2012) 056306.10.1063/1.3696032
    [88]
    M.L.E. Oliphant, Lord Rutherford, Experiments on the transmutations of elements by protons, Proc. R. Soc. A 141 (1933) 259.10.1098/rspa.1933.0117
    [89]
    N. Rostoker, M.W. Binderbauer, H.J. Honkhorst, Colliding beam fusion reactor, Science 278 (1997) 1419.10.1126/science.278.5342.1419
    [90]
    E.J. Lerner, S.K. Murali, D. Shannon, A.M. Blake, F. Van Roessel, Fusion reactions from >150 keV ions in a dense plasma focus plasmoid, Phys. Plasmas 19 (2012) 032704.10.1063/1.3694746
    [91]
    V.S. Belyaev, A.P. Matafonov, V.I. Vinogradov, V.P. Krainov, V.S. Lisitsa, et al., Observation of neutronless fusion reactions in picosecond laser plasmas, Phys. Rev. E 72 (2005) 026406.10.1103/physreve.72.026406
    [92]
    [93]
    V.E. Fortov, I.T. Iakubov, The Physics of Non-ideal Plasmas, World Scientific Publ, Singapore, 2009.
    [94]
    W. Cayzac, V. Bagnoud, M.M. Basko, S. Bedacht, A. Balzevic, et al., in: 33rd ECLIM 2014 Conf. Paris, Abstracts P. 32; Stepanek, J. 1991 Laser Interaction and Related Plasma Phenomena, vol. 5, Plenum Press, New York, 2014, p. 341.
    [95]
    S. Eliezer, H. Hora, G. Korn, N. Nissim, J.-M. Martinez Val, Response to “Comment on ‘Avalanche proton-boron fusion based on elastic nuclear collisions’”, Phys. Plasmas 23 (2016) 094703.10.1063/1.4963007
    [96]
    D. Margarone, A. Picciotto, A. Velyhan, J. Krasa, M. Kucharik, et al., Advanced scheme for high-yield laser driven nuclear reactions, Plasma Phys. Controlled Fusion 57 (2015) 014030.10.1088/0741-3335/57/1/014030
    [97]
    D.H.H. Hoffmann, S. Eliezer, H. Hora, N. Nissim, V.E. Fortov, et al., in: Non-idealplasma for Avalanche Boron Fusion ECLIM Conference Moscow, Sept. 2016, 2016.
    [98]
    W.M. Nevins, R. Swain, The thermonuclear fusion rate coefficient for p-B-11 reactions, Nucl. Fusion 40 (2000) 865.10.1088/0029-5515/40/4/310
    [99]
    K.W. Kanngiesser, D.H. Huang, H. Lips, Hochspannungs-Gleichstromübertragungs-Systeme und ihre Planung. EV HA 7, Siemens Monogr. München (1994).
    [100]
    C.P.J. Barty, The Nexawatt: strategies for Exawatt peak power laser based on NIF and NIF-like beam lines, in: IFSA Seattle Conf. 2015, Book of Abstracts, 2015, p. 459.
    [101]
    Li, R. Xin, X. Liang, Z. Gan, H. Lu, L. Yu, D. Yin, Y. Leng, X. Lu, C. Wang, Z. Xu, Progress toward a 10 PW ultra-intense laser facility: demonstration of 5 PW high gain large aperture Ti:sapphire amplifier, in: 4th Advanced Lasers and Photon Sources (ALPS'15), Yokohama, Japan, 22–24 April, 2015.
    [102]
    T. Ditmire, Progress toward rep-related multi-petawatt lasers, Proc. SPIE (2017) 10241-25.
    [103]
    H. Hora, Nonlinear effects and nonthermal plasmas, Nucl. Instrum. Methods A271 (1988) 117.10.1016/0168-9002(88)91133-3
    [104]
    H. Hora, S. Eliezer, G.J. Kirchhoff, G. Korn, P. Lalousis, G.H. Miley, S. Moustaizis, Extreme laser pulses for possible development of boron fusion power reactors for clean and lasting energy arXiv: 1704.07224 (2017).
    [105]
    H. Hora, Hansheng Peng, Weiyan Zhang, F. Osman, New Skin Depth Interaction by ps-TW Laser Pulses and Consequences for Fusion Energy, Dianyuan Fan, Keith A. Truesdell, Koji Yasui (Eds.), Proc. SPIE 4914 (2009) 37.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views (83) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return