Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 2 Issue 4
Jul.  2017
Turn off MathJax
Article Contents
Shangguan Xiuyun, Chen Sufen, Ma Shuang, Liu Meifang, Tang Changhuan, Yi Yong, Zhang Zhanwen. Effect of molecular weight on the quality of poly(alpha-methylstyrene) mandrel[J]. Matter and Radiation at Extremes, 2017, 2(4). doi: 10.1016/j.mre.2017.04.001
Citation: Shangguan Xiuyun, Chen Sufen, Ma Shuang, Liu Meifang, Tang Changhuan, Yi Yong, Zhang Zhanwen. Effect of molecular weight on the quality of poly(alpha-methylstyrene) mandrel[J]. Matter and Radiation at Extremes, 2017, 2(4). doi: 10.1016/j.mre.2017.04.001

Effect of molecular weight on the quality of poly(alpha-methylstyrene) mandrel

doi: 10.1016/j.mre.2017.04.001
More Information
  • Corresponding author: *Corresponding author. Research Center of Laser Fusion, China Academy of Engineering Physics, China. E-mail address: bjzzw1973@163.com (Z.W. Zhang).
  • Received Date: 2016-08-14
  • Accepted Date: 2017-04-21
  • Publish Date: 2017-07-15
  • Hollow poly(alpha-methylstyrene) (PAMS) shows application in inertial confinement fusion experiments as the degradable mandrels of glow plasma polymer shells. However, the molecular weight of PAMS has great influence on the quality of mandrels. In this work, this influence was systematically studied using several PAMS samples with different molecular weights. For PAMS shells with 900 μm inner diameter and different wall thickness, when the molecular weight of PAMS is in the range of 300–500 kg·mol−1, perfect sphericity and good wall thickness uniformity can be obtained. In contrast, when increasing molecular weight to 800 kg·mol−1, the sphericity and the wall thickness uniformity become worse. Moreover, compared with the wall uniformity, the sphericity of PAMS shells was much less sensitive to the molecular weight. The results also showed that the stability of W1/O compound droplets of PAMS shells were less affected by the molecular weight. It was revealed that the wall uniformity and the sphericity of the PAMS shells were associated with the diffusion rates of fluorobenzene (FB).
  • loading
  • [1]
    S.A. Letts, E.M. Fearon, S.R. Buckley, M.D. Saculla, L.M. Allison, Fabrication of polymer shells using a depolymerizable mandrel, Fusion Technol. 28 (1995) 1797.10.13182/fst28-5-1797
    [2]
    B.W. Mcquillan, A. Nikroo, D.A. Steinman, F.H. Elsner, D.G. Czechowicz, The PAMS/GDP process for production of ICF target mandrel, Fusion Sci. Technol. 31 (1997) 381.10.13182/fst31-381
    [3]
    A. Nikroo, J.M. Pontelandolfo, Fabrication of thin walled glow discharge polymer shells, Fusion Technol. 38 (2000) 58.10.13182/fst38-58
    [4]
    B.W. Mcquillan, A. Greenwood, Microencapsulation process factors which influence the sphericity of 1 mm o.d. poly (α-methylstyrene) shells for ICF, Fusion Technol. 35 (1999) 194.10.13182/fst99-a11963921
    [5]
    M. Takagi, R. Cook, R. Stephens, J. Gibson, S. Paguio, Stiffening of PAMS mandrels during curing, Fusion Technol. 38 (2000) 50.10.13182/fst00-a36115
    [6]
    S.F. Chen, L. Su, Y.Y. Liu, B. Li, X.B. Qi, et al., Density match during fabrication process of poly(α-methylstyrene) mandrels by microencapsulation, High Power Laser Part. Beams 24 (2012) 1561.10.3788/hplpb20122407.1561
    [7]
    K. Nagai, M. Nakajima, T. Norimatsu, Y. Izawa, T. Yamanaka, Solvent removal during curing process of highly spheric and monodispersed-sized polystyrene capsules from density-matched emulsions composed of water and benzene/1,2-dichloroethane, J. Polym. Sci., Part A: Polym. Chem. 38 (2000) 3412.10.1002/1099-0518(20000915)38:18<3412::aid-pola210>3.3.co;2-0
    [8]
    M. Takagi, T. Norimatsu, T. Yamanaka, S. Nakai, Development of deuterated polystyrene shells for laser fusion by means of a density-matched emulsion method, J. Vac. Sci. Technol., A 9 (1991) 2145.10.1116/1.577241
    [9]
    U. Kubo, H. Subakihara, Development of a coating technique for inertial confinement plastic targets, J. Vac. Sci. Technol., A 4 (1986) 1134.10.1116/1.573424
    [10]
    R.B. Stephens, B.M. McQuillan, W.J. Miller, Prospects for 2 mm diameter NIF polymer capsules, in: Fusion Engineering, 17th IEEE/NPSS Symposium, vol. 2, 1997, p. 621.
    [11]
    K. Kamogawa, N. Kuwayama, T. Katagiri, H. Akatsuka, T. Sakai, et al., Dispersion and stabilization in water of droplets of hydrophobic organic liquids with the addition of hydrophobic polymers, Langmuir 19 (2003) 4063.10.1021/la020749i
    [12]
    R.W. Wang, Y. Zhang, G.H. Ma, Z.G. Su, Preparation of uniform poly(glycidylmethacrylate) porous microspheres by membrane emulsification-polymerization technology, J. Appl. Polym. Sci. 102 (2006) 5018.10.1002/app.25015
    [13]
    M. Takagi, R. Cook, B. McQuillan, Development of high quality poly(α-methylstyrene) mandrels for NIF, Nucl. Sci. Eng. 41 (2000) 278.
    [14]
    M.F. Liu, S.F. Chen, X.B. Qi, B. Li, R.T. Shi, Improvement of wall thickness uniformity of thick-walled polystyrene shells by density matching, Chem. Eng. J. 241 (2014) 466.10.1016/j.cej.2013.08.120
    [15]
    M. Takagi, T. Norimatsu, T. Yamanaka, S. Nakai, H. Ito, A novel technique to make foam shells with high sphericity and wall uniformity for cryogenic laser fusion targets, J. Vac. Sci. Technol., A 9 (1991) 820.10.1116/1.577322
    [16]
    S.F. Chen, Y.Y. Liu, S. Wei, L. Su, B. Li, Fabrication of millimeter-sized monodisperse poly(α-methylstyrene) capsules, High PowerLaser Part. Beams 24 (2012) 2647.10.3788/hplpb20122411.2647
    [17]
    B.W. McQuillan, F.H. Elsner, R.B. Stephens, L.C. Brown, The use of CaCl2 and other salts to improve surface finish and eliminate vacuoles in ICF microencapsulated shells, Fusion Technol. 35 (1999) 198.10.13182/fst99-a11963922
    [18]
    C. Lattaud, L. Guillot, C. Brachais, E. Fleury, O. Legaie, et al., Influence of a density mismatch on TMPTMA shells nonconcentricity, J. Appl. Polym. Sci. 124 (2012) 4882.
    [19]
    M.F. Liu, R.T. Shi, S.F. Chen, Y.Y. Liu, L. Su, Batch characterization of ignition target mandrels, High Power Laser Part. Beams 25 (2013) 918.10.3788/hplpb20132504.0918
    [20]
    H. Huang, R.B. Stephens, D.W. Hill, C. Lyon, A. Nikroo, Automated batch characterization of ICF shells with vision-enable optical microscope system, Fusion Sci. Technol. 45 (2003) 214.10.13182/fst04-a453
    [21]
    M. Takagi, R. Cook, R. Stephens, J. Gibson, S. Paguio, Decreasing out-of-round in poly(α-methylstyrene) mandrels by increasing interfacial tension, Fusion Technol. 38 (2000) 46.10.13182/fst00-a36114
    [22]
    J.S. Vrentas, J.L. Duda, Molecular diffusion in polymer solutions, AIChE J. 25 (1979) 1.10.1002/aic.690250102
    [23]
    J. Selser, Dilute-solution hydrodynamic behavior of poly(α-methylstyrene) in a good solvent, Macromolecules 14 (1981) 346.10.1021/ma50003a023
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (84) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return