Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 2 Issue 4
Jul.  2017
Turn off MathJax
Article Contents
Weber S., Bechet S., Borneis S., Brabec L., Bučka M., Chacon-Golcher E., Ciappina M., DeMarco M., Fajstavr A., Falk K., Garcia E.-R., Grosz J., Gu Y.-J., Hernandez J.-C., Holec M., Janečka P., Jantač M., Jirka M., Kadlecova H., Khikhlukha D., Klimo O., Korn G., Kramer D., Kumar D., Lastovička T., Lutoslawski P., Morejon L., Olšovcová V., Rajdl M., Renner O., Rus B., Singh S., Šmid M., Sokol M., Versaci R., Vrána R., Vranic M., Vyskočil J., Wolf A., Yu Q.. P3: An installation for high-energy density plasma physics and ultra-high intensity laser–matter interaction at ELI-Beamlines[J]. Matter and Radiation at Extremes, 2017, 2(4). doi: 10.1016/j.mre.2017.03.003
Citation: Weber S., Bechet S., Borneis S., Brabec L., Bučka M., Chacon-Golcher E., Ciappina M., DeMarco M., Fajstavr A., Falk K., Garcia E.-R., Grosz J., Gu Y.-J., Hernandez J.-C., Holec M., Janečka P., Jantač M., Jirka M., Kadlecova H., Khikhlukha D., Klimo O., Korn G., Kramer D., Kumar D., Lastovička T., Lutoslawski P., Morejon L., Olšovcová V., Rajdl M., Renner O., Rus B., Singh S., Šmid M., Sokol M., Versaci R., Vrána R., Vranic M., Vyskočil J., Wolf A., Yu Q.. P3: An installation for high-energy density plasma physics and ultra-high intensity laser–matter interaction at ELI-Beamlines[J]. Matter and Radiation at Extremes, 2017, 2(4). doi: 10.1016/j.mre.2017.03.003

P3: An installation for high-energy density plasma physics and ultra-high intensity laser–matter interaction at ELI-Beamlines

doi: 10.1016/j.mre.2017.03.003
More Information
  • Corresponding author: *Corresponding author. E-mail address: stefan.weber@eli-beams.eu (S. Weber).
  • Received Date: 2017-01-30
  • Accepted Date: 2017-03-24
  • Publish Date: 2017-07-15
  • ELI-Beamlines (ELI-BL), one of the three pillars of the Extreme Light Infrastructure endeavour, will be in a unique position to perform research in high-energy-density-physics (HEDP), plasma physics and ultra-high intensity (UHI) ( 10 22 W / cm 2 ) laser–plasma interaction. Recently the need for HED laboratory physics was identified and the P3 (plasma physics platform) installation under construction in ELI-BL will be an answer. The ELI-BL 10 PW laser makes possible fundamental research topics from high-field physics to new extreme states of matter such as radiation-dominated ones, high-pressure quantum ones, warm dense matter (WDM) and ultra-relativistic plasmas. HEDP is of fundamental importance for research in the field of laboratory astrophysics and inertial confinement fusion (ICF). Reaching such extreme states of matter now and in the future will depend on the use of plasma optics for amplifying and focusing laser pulses. This article will present the relevant technological infrastructure being built in ELI-BL for HEDP and UHI, and gives a brief overview of some research under way in the field of UHI, laboratory astrophysics, ICF, WDM, and plasma optics.
  • loading
  • [1]
    D. Strickland, G. Mourou, Compression of amplified chirped optical pulses, Opt. Commun. 56 (1985) 219.10.1016/0030-4018(85)90120-8
    [2]
    G. Mourou, C. Barty, M. Perry, Ultrahigh-intensity lasers: physics of the extreme on a tabletop, Phys. Today 51 (1998) 22.10.1063/1.882131
    [3]
    A. Dubietis, G. Jonusauskas, A. Piskarskas, Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal, Opt. Commun. 88 (1992) 437.10.1016/0030-4018(92)90070-8
    [4]
    Extreme Light Infrastructure: http://www.eli-laser.eu.
    [5]
    B. LeGarrec, S. Sebban, D. Margarone, M. Precek, S. Weber, et al., Eli-beamlines: extreme light infrastructure science and technology with ultra-intense lasers, Proc. SPIE 8962 (2014) 8962OI.10.1364/cleo_si.2013.ctu2d.7
    [6]
    B. Rus, P. Bakule, D. Kramer, J. Naylon, J. Thoma, et al., Eli-beamlines: development of next generation short-pulse laser systems, Proc. SPIE 9515 (2015) 9515OF.
    [7]
    Extreme Light Infrastructure Beamlines: http://www.eli-beams.eu.
    [8]
    G. Mourou, G. Korn, W. Sandner, J. Collier (Eds.), ELI Extreme Light Infrastructure (Whitebook), THOSS Media GmbH, Berlin, Germany, 2011.
    [9]
    S.V. Lebedev (Ed.), High Energy Density Laboratory Astrophysics, Springer Verlag Berlin, Germany, 2007.
    [10]
    S. Bulanov, T. Esirkepov, M. Kando, J. Koga, K. Kondo, et al., On the problems of relativistic laboratory astrophysics and fundamental physics with super powerful lasers, Plasma Phys. Rep. 41 (2015) 1.10.1134/s1063780x15010018
    [11]
    D. Ryutov, R. Drake, B. Remington, Criteria for scaled laboratory simulations of astrophysical MHD phenomena, Astrophys. J. 127 (2000) 465.10.1086/313320
    [12]
    B. Remington, D. Arnett, R. Drake, H. Takabe, Modeling astrophysics phenomena in the laboratory with intense lasers, Science 284 (1999) 1488.10.1126/science.284.5419.1488
    [13]
    C. Li, P. Tzeferacos, D. Lamb, G. Gregori, P. Norreys, et al., Scaled laboratory experiments explain the kink behaviour of the Crab Nebula jet, Nat. Commun. 7 (2016) 13081.10.1038/ncomms13081
    [14]
    M. Marklund, P. Shukla, Nonlinear collective effects in photon-photon and photon-plasma interactions, Rev. Mod. Phys. 78 (2006) 591.10.1103/revmodphys.78.591
    [15]
    G. Mourou, T. Tajima, S. Bulanov, Optics in the relativistic regime, Rev. Mod. Phys. 78 (2006) 309.10.1103/revmodphys.78.309
    [16]
    Y. Salamin, S. Hu, K. Hatsagortsyan, C. Keitel, Relativistic high-power laser-matter interaction, Phys. Rep. 427 (2006) 41.10.1016/j.physrep.2006.01.002
    [17]
    T. Brabec (Ed.), Strong Field Laser Physics, Springer Verlag, 2008.
    [18]
    A. DiPiazza, C. Müller, K.Z. Hatsagortsyan, C.H. Keitel, Extremely high-intensity laser interactions with fundamental quantum systems, Rev. Mod. Phys. 84 (2012) 1177.10.1103/revmodphys.84.1177
    [19]
    DOE Office of Science and National Nuclear Security Administration, Basic Research Needs for High Energy Density Density Laboratory Physics, US Department of Energy, 2009.
    [20]
    R. Drake, High-energy-density-physics: Fundamentals, Inertial Fusion, and Experimental Astrophysics, Springer Verlag Berlin, Germany, 2006.
    [21]
    F. Graziani, M. Desjarlais, R. Redmer, S. Trickey (Eds.), Frontiers and Challenges in Warm Dense Matter, Springer International Publishing, Berlin, Germany, 2014.
    [22]
    R. Kirkwood, J. Moody, J. Kline, E. Dewald, S. Glenzer, et al., A review of laser-plasma interaction physics of indirect-drive fusion, Plasma. Phys. Controlled Fusion 55 (2013) 103001.10.1088/0741-3335/55/10/103001
    [23]
    S. Weber, C. Riconda, Temperature dependence of parametric instabilities in the context of the shock-ignition approach to inertial confinement fusion, High. Power Laser Sci. Eng. 3 (2015) e6.10.1017/hpl.2014.50
    [24]
    C. Riconda, S. Weber, Raman-Brillouin interplay for inertial confinement fusion relevant laser-plasma interaction, High. Power Laser Sci. Eng. 4 (2016) e23.10.1017/hpl.2016.22
    [25]
    J. Fuchs, A. Gonoskov, M. Nakatsutsumi, W. Nazarov, F. Quéré, et al., Plasma devices for focusing extreme light pulses, Eur. Phys. J.: Spec. Top. 223 (2014) 1169.10.1140/epjst/e2014-02169-y
    [26]
    G. Lehmann, K. Spatschek, Transient plasma photonic crystals for high-power lasers, Phys. Rev. Lett. 116 (2016) 225002.10.1103/physrevlett.116.225002
    [27]
    B. Gonzalez-Izquierdo, R. Gray, M. King, R. Dance, R. Wilson, et al., Optically controlled dense current structures driven by relativistic plasma aperture-induced diffraction, Nat. Phys. 12 (2016) 505.10.1038/nphys3613
    [28]
    R. Clarke, S. Dorkings, R. Heathcote, K. Markey, D. Neely, Proton activation history on the vulcan high-intensity petawatt laser facility, Laser Part. Beams 32 (2014) 455.10.1017/s026303461400038x
    [29]
    T. Bohlen, F. Cerutti, M. Chin, A. Fassò, A. Ferrari, et al., The fluka code: developments and challenges for high energy and medical applications, Nucl. Data Sheets 120 (2014) 211.10.1016/j.nds.2014.07.049
    [30]
    A. Ferrari, P. Sala, A. Fassò, J. Ranft, Fluka: a multi-particle transport code, Tech. Rep., CERN-2005-10, 2005. INFN/TC_05/11, SLAC-R-773(2005).
    [31]
    V. Vlachoudis, Flair: A Powerful but User Friendly Graphical Interface for Fluka, Tech. rep., Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), vol. 2009, Saratoga Springs, New York, 2009. URL http://www.fluka.org/flair/Flair_MC2009.pdf.
    [32]
    Protection of the public in situations of prolonged radiation exposure, Tech. Rep., ICRP Publication 82, Ann. ICRP 29 (1–2) (1999).
    [33]
    Czech Republic Decree No. 307/2002 Coll. On Radiation Protection.
    [34]
    F. Sylla, M. Veltcheva, S. Kahaly, A. Flacco, V. Malka, Development and characterization of very dense submillimetric gas jets for laser-plasma interaction, Rev. Sci. Instrum. 83 (2012) 033507.10.1063/1.3697859
    [35]
    S. Garcia, D. Chatain, J. Perin, Continuous production of a thin ribbon of solid hydrogen, Laser Part. Beams 32 (2014) 569.10.1017/s0263034614000524
    [36]
    D. Ryutov, R.P. Drake, J. Kane, E. Liang, B.A. Remington, et al., Similarity criteria for the laboratory simulation of supernova hydrodynamics, Astrophys. J. 518 (1999) 821.10.1086/307293
    [37]
    D.D. Ryutov, B.A. Remington, H.F. Robey, R.P. Drake, Magnetohydrodynamic scaling: from astrophysics to the laboratory, Phys. Plasmas 8 (2001) 1804.10.1063/1.1344562
    [38]
    D. Ryutov, N. Kugland, H. Park, C. Plechaty, B. Remington, et al., Basic scalings for collisionless-shock experiments in a plasma without pre-imposed magnetic field, Plasma Phys. Controlled Fusion 54 (2012) 105021.10.1088/0741-3335/54/10/105021
    [39]
    P.M. Nilson, L. Willingale, M.C. Kaluza, C. Kamperidis, S. Minardi, et al., Phys. Rev. Lett. 97 (2006) 255001.10.1103/physrevlett.97.255001
    [40]
    W. Fox, G. Fiksel, A. Bhattacharjee, P.-Y. Chang, K. Germaschewski, et al., Filamentation instability of counterstreaming laser-driven plasmas, Phys. Rev. Lett. 111 (2013) 225002.10.1103/physrevlett.111.225002
    [41]
    C.K. Li, D.D. Ryutov, S.X. Hu, M.J. Rosenberg, A.B. Zylstra, et al., Structure and dynamics of colliding plasma jets, Phys. Rev. Lett. 111 (2013) 235003.10.1103/physrevlett.111.235003
    [42]
    E.C. Harding, J.F. Hansen, O.A. Hurricane, R.P. Drake, H.F. Robey, et al., Observation of a kelvin-helmholtz instability in a high-energy-density plasma on the omega laser, Phys. Rev. Lett. 103 (2009) 045005.10.1103/physrevlett.103.045005
    [43]
    J. Yoo, M. Yamada, H. Ji, C. Myers, Observation of ion acceleration and heating during collisionless magnetic reconnection in a laboratory plasma, Phys. Rev. Lett. 110 (2013) 215007.10.1103/physrevlett.110.215007
    [44]
    Y. Gu, O. Klimo, D. Kumar, Y. Liu, S. Singh, et al., Fast magnetic-field annihilation in the relativistic collisionless regime driven by two ultrashort high-intensity laser pulses, Phys. Rev. E 93 (2016) 013203.10.1103/physreve.93.013203
    [45]
    Y. Gu, Q. Yu, O. Klimo, T. Esirkepov, S. Bulanov, et al., Fast magnetic energy dissipation in relativistic plasma induced by high order laser modes, High Power Laser Sci. Eng. 4 (2016) e19.10.1017/hpl.2016.16
    [46]
    Y. Gu, O. Klimo, D. Kumar, S. Bulanov, T. Esirkepov, et al., Fast magnetic field annihilation driven by two laser pulses in underdense plasma, Phys. Plasmas 22 (2015) 103113.10.1063/1.4933408
    [47]
    J. Workman, J.R. Fincke, P. Keiter, G.A. Kyrala, Development of intense point x-ray sources for backlighting high energy density experiments, Rev. Sci. Instrum. 3915 (2004).10.1063/1.1789248
    [48]
    H.-S. Park, D.M. Chambers, H.-K. Chung, R.J. Clarke, R. Eagleton, et al., High-energy ka radiography using high-intensity, short-pulse lasers, Phys. Plasmas 13 (2006) 056309.10.1063/1.2178775
    [49]
    A. Ovchinnikov, O. Kostenko, O. Chefonov, O. Rosmej, N. Andreev, et al., Characteristic x-rays generation under the action of femtosecond laser pulses on nano-structured targets, Laser Part. Beams 29 (2011) 249.10.1017/s026303461100022x
    [50]
    M.A. Purvis, V.N. Shlyaptsev, R. Hollinger, C. Bargsten, A. Pukhov, et al., Relativistic plasma nanophotonics for ultrahigh energy density physics, Nat. Photonics 7 (2013) 796.10.1038/nphoton.2013.217
    [51]
    S. Glenzer, R. Redmer, X-ray thomson scattering in high energy density plasmas, Rev. Mod. Phys. 81 (2009) 1625.10.1103/revmodphys.81.1625
    [52]
    P.K. Patel, A.J. Mackinnon, M.H. Key, T.E. Cowan, M.E. Foord, et al., Isochoric heating of solid-density matter with an ultrafast proton beam, Phys. Rev. Lett. 91 (2003) 125004.10.1103/physrevlett.91.125004
    [53]
    S. Mangles, C.D. Murphy, Z. Najmudin, A. Thomas, Monoenergetic beams of relativistic electrons from intense laser-plasma interactions, Nature (2004).
    [54]
    C.G.R. Geddes, K. Nakamura, G.R. Plateau, C. Toth, E. Cormier-Michel, et al., Plasma-density-gradient injection of low absolute-momentum-spread electron bunches, Phys. Rev. Lett. 100 (2008) 215004.10.1103/physrevlett.100.215004
    [55]
    Z.-H. He, A.G.R. Thomas, B. Beaurepaire, J.A. Nees, B. Hou, et al., Electron diffraction using ultrafast electron bunches from a laser-wakefield accelerator at khz repetition rate, Appl. Phys. Lett. 102 (2013) 064104.10.1063/1.4792057
    [56]
    H. Habara, K. Ohta, K.A. Tanaka, G.R. Kumar, M. Krishnamurthy, et al., Direct, absolute, and in Situ measurement of fast electron transport via cherenkov emission, Phys. Rev. Lett. 104 (2010) 055001.10.1103/physrevlett.104.055001
    [57]
    M. Roth, D. Jung, K. Falk, N. Guler, O. Deppert, et al., Bright laser-driven neutron source based on the relativistic transparency of solids, Phys. Rev. Lett. 110 (2013) 044802.10.1103/physrevlett.110.044802
    [58]
    N. Guler, P. Volegov, A. Favalli, F.E. Merrill, K. Falk, et al., Neutron imaging with the short-pulse laser driven neutron source at the trident laser facility, J. Appl. Phys. 120 (2016) 154901.10.1063/1.4964248
    [59]
    T. Guillot, Interiors of giant planets inside and outside the solar system, Science 286 (5437) (1999) 72.10.1126/science.286.5437.72
    [60]
    Nuckolls, Laser compression of matter to super-high densities: thermonuclear (CTR) applications, Nature 239 (1972) 139.10.1038/239139a0
    [61]
    R.L. McCrory, D.D. Meyerhofer, S.J. Loucks, S. Skupsky, R. Betti, et al., Progress in direct-drive inertial confinement fusion research at the laboratory for laser energetics, Eur. Phys. J. D. 44 (2007) 233.10.1140/epjd/e2006-00109-0
    [62]
    K.P. Driver, B. Militzer, All-electron path integral monte carlo simulations of warm dense matter: application to water and carbon plasmas, Phys. Rev. Lett. 108 (2012) 115502.10.1103/physrevlett.108.115502
    [63]
    D. Saumon, C. Starrett, J. Kress, J. Clérouin, The quantum hypernetted chain model of warm dense matter, High Energy Density Phys. 8 (2012) 150.10.1016/j.hedp.2011.11.002
    [64]
    B. Albertazzi, B. Béard, A. Ciardi, T. Vinci, J. Albrecht, et al., Production of large volume, strongly magnetized laser-produced plasmas by use of pulsed external magnetic fields, Rev. Sci. Instrum. 84 (2013) 043505.10.1063/1.4795551
    [65]
    M.Z. Mo, Z. Chen, S. Fourmaux, A. Saraf, K. Otani, et al., Laser wakefield generated x-ray probe for femtosecond time-resolved measurements of ionization states of warm dense aluminum, Rev. Sci. Instrum. 84 (2013) 123106.10.1063/1.4842237
    [66]
    R.F. Smith, J.H. Eggert, M.D. Saculla, A.F. Jankowski, M. Bastea, et al., Ultrafast dynamic compression technique to study the kinetics of phase transformations in bismuth, Phys. Rev. Lett. 101 (2008) 065701.10.1103/physrevlett.101.065701
    [67]
    D.G. Hicks, T.R. Boehly, P.M. Celliers, J.H. Eggert, S.J. Moon, et al., Laser-driven single shock compression of fluid deuterium from 45 to 220 gpa, Phys. Rev. B 79 (2009) 014112.10.1103/physrevb.79.014112
    [68]
    K. Falk, C.A. McCoy, C.L. Fryer, C.W. Greeff, A.L. Hungerford, et al., Temperature measurements of shocked silica aerogel foam, Phys. Rev. E 90 (2014) 033107.10.1103/physreve.90.033107
    [69]
    K. Falk, E.J. Gamboa, G. Kagan, D.S. Montgomery, B. Srinivasan, et al., Equation of state measurements of warm dense carbon using laser-driven shock and release technique, Phys. Rev. Lett. 112 (2014) 155003.10.1103/physrevlett.112.155003
    [70]
    S.H. Glenzer, G. Gregori, R.W. Lee, F.J. Rogers, S.W. Pollaine, et al., Demonstration of spectrally resolved x-ray scattering in dense plasmas, Phys. Rev. Lett. 90 (2003) 175002.10.1103/physrevlett.90.175002
    [71]
    P.M. Celliers, D.K. Bradley, G.W. Collins, D.G. Hicks, T.R. Boehly, et al., Line-imaging velocimeter for shock diagnostics at the OMEGA laser facility, Rev. Sci. Instrum. 75 (2004) 4916.10.1063/1.1807008
    [72]
    M.C. Gregor, R. Boni, A. Sorce, J. Kendrick, C.A. McCoy, et al., Absolute calibration of the OMEGA streaked optical pyrometer for temperature measurements of compressed materials, Rev. Sci. Instrum. 87 (2016) 114903.10.1063/1.4968023
    [73]
    D. Kraus, A. Ravasio, M. Gauthier, D.O. Gericke, Nanosecond formation of diamond and lonsdaleite by shock compression of graphite, Nature 7, 10970 (2016).10.1038/ncomms10970
    [74]
    P. McKenna, A.P.L. Robinson, D. Neely, M.P. Desjarlais, D.C. Carroll, et al., Effect of lattice structure on energetic electron transport in solids irradiated by ultraintense laser pulses, Phys. Rev. Lett. 106 (2011) 185004.10.1103/physrevlett.106.185004
    [75]
    A. Schropp, R. Hoppe, V. Meier, J. Patommel, F. Seiboth, et al., Imaging shock waves in diamond with both high temporal and spatial resolution at an XFEL., Sci. Rep. 5 (2015) 11089.10.1038/srep11089
    [76]
    G. Gregori, S.H. Glenzer, W. Rozmus, R.W. Lee, O.L. Landen, Theoretical model of x-ray scattering as a dense matter probe, Phys. Rev. E 67 (2003) 026412.10.1103/physreve.67.026412
    [77]
    S. Atzeni, J. Meyer-ter-Vehn, The Physic of Inertial Fusion, Clarendon Press, Oxford, United Kingdom, 2004.
    [78]
    O. Hurricane, D. Callahan, D. Casey, P. Celliers, C. Cerjan, et al., Fuel gain exceeding unityin an inertially confined fusion implosion, Nature 506 (2014) 343.10.1038/nature13008
    [79]
    R. Betti, O. Hurricane, Inertial-confinement fusion with lasers, Nat. Phys. 12 (2016) 435.10.1038/nphys3736
    [80]
    R. Betti, C. Zhou, K. Anderson, L. Perkins, W. Theobald, et al., Shock ignition of thermonuclear fuel with high areal density, Phys. Rev. Lett. 98 (2007) 155001.10.1103/physrevlett.98.155001
    [81]
    S. Atzeni, X. Ribeyre, G. Schurtz, A. Schmitt, B. Canaud, et al., Shock ignition of thermonuclear fuels: principles and modelling, Nucl. Fusion 54 (2014) 054008.10.1088/0029-5515/54/5/054008
    [82]
    D. Batani, S. Baton, A. Casner, S. Depierreux, M. Hohenberger, et al., Physics issues for shock ignition, Nucl. Fusion 54 (2014) 054009.10.1088/0029-5515/54/5/054009
    [83]
    D. Batani, L. Antonelli, G. Folpini, Y. Maheut, L. Giuffrida, et al., Generation of high pressure shocks relevant to the shock-ignition intensity regime, Phys. Plasmas 21 (2014) 032710.10.1063/1.4869715
    [84]
    V. Tikhonchuk, A. Colaitis, A. Vallet, E. Llor Aisa, G. Duchateau, et al., Physics of laser-plasma interaction for shock ignition of fusion reactions, Plasma Phys. Controlled Fusion 58 (2015) 014018.10.1088/0741-3335/58/1/014018
    [85]
    G. von Guderley, Starke kugelige und zylindrische Verdichtungsstösse in der Nähe des Kugelmittelpunktes bzw. der Zylinderachse, Luftfahrt-Forsch 9 (1942) 302.
    [86]
    K. Brueckner, S. Jorna, Laser-driven fusion, Rev. Mod. Phys. 46 (1974) 325.10.1103/revmodphys.46.325
    [87]
    V. Shcherbakov, Ignition of a laser-fusion target by a focusing shock wave, Sov. J. Plasma Phys. 9 (1983) 240.
    [88]
    X. Ribeyre, G. Schurtz, M. Lafon, S. Galera, S. Weber, Shock ignition: an alternative scheme for HiPER, Plasma Phys.Controlled Fusion 51 (2009) 015013.10.1088/0741-3335/51/1/015013
    [89]
    X. Ribeyre, M. Lafon, G. Schurtz, M. Olazabal-Loumé, J. Breil, et al., Shock ignition: modelling and target design robustness, Plasma Phys. Controlled Fusion 51 (2009) 124030.10.1088/0741-3335/51/12/124030
    [90]
    O. Klimo, S. Weber, V. Tikhonchuk, J. Limpouch, Particle-in-cell simulations of laser-plasma interaction for the shock ignition scenario, Plasma. Phys. Controlled Fusion 52 (2010) 055013.10.1088/0741-3335/52/5/055013
    [91]
    O. Klimo, J. Psikal, V. Tikhonchuk, S. Weber, Two-dimensional simulations of laser-plasma interaction and hot electron generation in the context of shock-ignition research, Plasma. Phys. Controlled Fusion 56 (2014) 055010.10.1088/0741-3335/56/5/055010
    [92]
    C. Riconda, S. Weber, V. Tikhonchuk, A. Heron, Kinetic simulations of stimulated Raman backscattering and related processes for the shock-ignition approach to inertial confinement fusion, Phys. Plasmas 18 (2011) 092701.10.1063/1.3630937
    [93]
    S. Weber, C. Riconda, O. Klimo, A. Heron, V. Tikhonchuk, Fast saturation of the two-plasmon-decay instability for shock-ignition conditions, Phys. Rev. E 85 (2012) 016403.10.1103/physreve.85.016403
    [94]
    M. Temporal, B. Canaud, W. Garbett, R. Ramis, S. Weber, Irradiation uniformity at the laser magajoule facility in the context of the shock ignition scheme, High Power Laser Sci. Eng. 2 (2014) e8.10.1017/hpl.2014.42
    [95]
    S. Weber, G. Riazuelo, P. Michel, R. Loubere, F. Walraet, et al., Modeling of laser-plasma interaction on hydrodynamic scales: physics development and comparison with experiments, Laser Part. Beams 22 (2004) 189.10.1017/s0263034604222157
    [96]
    S. Weber, P. Maire, R. Loubere, G. Riazuelo, P. Michel, et al., Modeling of laser-plasma interaction on hydrodynamic scales: physics development and comparison with experiments, Comput. Phys. Commun. 168 (2005) 141.10.1016/j.cpc.2005.01.017
    [97]
    M. Holec, J. Limpouch, R. Liska, S. Weber, High-order discontinuous galerkin nonlocal transport and energy equations scheme for radiation hydrodynamics, Int. J. Numer. Meth. Fluids 83 (2017) 779, 10.1002/fld.4288.
    [98]
    L.L. Ji, J. Snyder, A. Pukhov, R.R. Freeman, K.U. Aklib, Towards manipulating relativistic laser pulses with micro-tube plasma lenses, Sci. Rep. 6 (2016) 23256.10.1038/srep23256
    [99]
    S. Monchocé, S. Kahaly, A. Leblanc, L. Videau, P. Combis, et al., Optically controlled solid-density transient plasma gratings, Phys. Rev. Lett. 112 (2014) 145008.10.1103/physrevlett.112.145008
    [100]
    G. Scott, V. Bagnoud, C. Brabetz, R. Clarke, J. Green, et al., Optimization of plasma mirror reflectivity and optical quality using double laser pulses, New J. Phys. 17 (2015) 033027.10.1088/1367-2630/17/3/033027
    [101]
    M. Maier, W. Kaiser, J. Giordmaine, Intense light bursts in the stimulated Raman effect, Phys. Rev. Lett. 17 (1966) 1275.10.1103/physrevlett.17.1275
    [102]
    R. Milroy, C. Capjack, C. James, A plasma-laser amplifier in the 11–16μm wavelength range, Plasma Phys. 19 (1977) 989.10.1088/0032-1028/19/10/009
    [103]
    R. Milroy, C. Capjack, C. James, Plasma laser pulse amplifier using induced raman or brillouin processes, Phys. Fluids 22 (1979) 1922.10.1063/1.862481
    [104]
    C. Capjack, C. James, J. McMullin, Plasma krf laser pulse compressor, J. Appl. Phys. 53 (1982) 4046.10.1063/1.331267
    [105]
    A. Andreev, A. Sutyagin, Feasibility of optical pulse compression by stimulated brillouin scattering in a plasma, Sov. J. Quantum Electron 19 (1989) 1579.10.1070/qe1989v019n12abeh009826
    [106]
    Z. Sheng, J. Zhang, D. Umstadter, Femtosecond laser induced plasma diffraction gratings in air as photonic devices for high intensity laser applications, Appl. Phys. 77 (2003) 673.10.1007/s00340-003-1324-2
    [107]
    D. Forslund, J. Kindel, E. Lindman, Theory of stimulated scattering processes in laser-irradiated plasmas, Phys. Fluids 18 (1975) 1002.10.1063/1.861248
    [108]
    D. Ristau (Ed.), Laser-induced Damage in Optical Materials, Taylor and Francis Inc, 2014.
    [109]
    A. Andreev, C. Riconda, V. Tikhonchuk, S. Weber, Short light pulse amplification and compression by stimulated brillouin scattering in plasmas in the strong coupling regime, Phys. Plasmas 13 (2006) 053110.10.1063/1.2201896
    [110]
    S. Weber, C. Riconda, L. Lancia, J.-R. Marquès, G. Mourou, et al., Amplification of ultrashort laser pulses by Brillouin backscattering in plasmas, Phys. Rev. Lett. 111 (2013) 055004.10.1103/physrevlett.111.055004
    [111]
    A. Frank, J. Fuchs, L. Lehmann, J.-R. Marquès, G. Mourou, et al., Amplification of ultra-short light pulses by ion collective modes in plasmas, Eur. Phys. J. Spec. Top. 223 (2014) 1153.10.1140/epjst/e2014-02167-1
    [112]
    C. Riconda, S. Weber, L. Lancia, J.-R. Marquès, G. Mourou, et al., Spectral characteristics of ultra-hort laser pulses in plasma amplifiers, Phys. Plasmas 20 (2013) 083115.10.1063/1.4818893
    [113]
    C. Riconda, S. Weber, L. Lancia, J.-R. Marquès, G. Mourou, et al., Plasma-based creation of short light pulses: analysis and simulation of amplification and focusing, Plasma Phys. control. Fusion 57 (2015) 014002.10.1088/0741-3335/57/1/014002
    [114]
    M. Chiaramello, C. Riconda, F. Amiranoff, J. Fuchs, M. Grech, et al., Optimization of interaction conditions for efficient short laser pulse amplification by stimulated brillouin scattering in the strongly coupled regime, Phys. Plasmas 23 (2016) 072103.10.1063/1.4955322
    [115]
    M. Chiaramello, F. Amiranoff, C. Riconda, S. Weber, Role of frequency chirp and energy flow directionality in the strong coupling regime of brillouin-based plasma amplification, Phys. Rev. Lett. 117 (2016) 235003.10.1103/physrevlett.117.235003
    [116]
    G. Lehmann, F. Schluck, K. Spatschek, Regions for brillouin seed pulse growth in relativistic laser-plasma interaction, Phys. Plasmas 19 (2012) 093120.10.1063/1.4754698
    [117]
    G. Lehmann, K. Spatschek, Nonlinear brillouin amplification of finite-duration seeds in the strong coupling regime, Phys. Plasmas 20 (2016) 073112.10.1063/1.4816030
    [118]
    G. Lehmann, K. Spatschek, Temperature dependence of seed pulse amplitude and density grating in brillouin amplification, Phys. Plasmas 23 (2016) 023107.10.1063/1.4941966
    [119]
    F. Schluck, G. Lehmann, K. Spatschek, Amplification of a seed pumped by a chirped laser in the strong coupling brillouin regime, Phys. Plasmas 22 (2015) 093104.10.1063/1.4929859
    [120]
    F. Schluck, G. Lehmann, C. Müllwer, K. Spatschek, Dynamical transition between weak and strong coupling in brillouin laser pulse amplification, Phys. Plasmas 23 (2016) 083105.10.1063/1.4960028
    [121]
    L. Lancia, J.-R. Marquès, M. Nakatsutsumi, C. Riconda, S. Weber, et al., Experimental evidence of short light pulse amplification using strong-coupling stimulated Brillouin scattering in the pump depletion regime, Phys. Rev. Lett. 104 (2010) 025001.10.1103/physrevlett.104.025001
    [122]
    L. Lancia, A. Giribono, L. Vassura, M. Chiaramello, C. Riconda, et al., Signatures of the self-similar regime of strongly coupled stimulated Brillouin scattering for efficient short laser pulse amplification, Phys. Rev. Lett. 116 (2016) 075001.10.1103/physrevlett.116.075001
    [123]
    S. Bahk, P. Rousseau, T. Planchon, V. Chvykov, G. Kalintchenko, et al., Generation and characterization of the highest laser intensities (1022 W/cm2)., Opt. Lett. 29 (2004) 2837.10.1364/ol.29.002837
    [124]
    A. Kon, M. Nakatsutsumi, S. Buffechoux, Z.L. Chen, J. Fuchs, et al., Geometrical optimization of an ellipsoidal plasma mirror toward tight focusing of ultra-intense laser pulse, J. Phys.: Conf. Ser. 244 (2010) 032008.10.1088/1742-6596/244/3/032008
    [125]
    M. Nakatsutsumi, A. Kon, S. Buffechoux, P. Audebert, J. Fuchs, et al., Fast focusing of short-pulse lasers by innovative plasma optics toward extreme intensity, Opt. Lett. 35 (2010) 2314.10.1364/ol.35.002314
    [126]
    M. Nakatsutsumi, Y. Sentoku, S. N. Chen, S. Buffechoux, A. Kon, et al., On magnetic inhibition of laser-driven, sheath-accelerated high-energy protons (Submitted for publication).
    [127]
    R. Wilson, M. King, R.J. Gray, D.C. Carroll, R.J. Dance, et al., Ellipsoidal plasma mirror focusing of high power laser pulses to ultra-high intensities, Phys. Plasmas 23 (2016) 033106.10.1063/1.4943200
    [128]
    T.-M. Jeong, S. Weber, B. LeGarrec, D. Margarone, T. Mocek, et al., Spatio-temporal modification of femtosecond focal spot under tight focusing condition, Opt. Express 23 (2015) 11641.10.1364/oe.23.011641
    [129]
    I. Thiele, S. Skupin, R. Nuter, Boundary conditions for arbitrarily shaped and tightly focused laser pulses in electromagnetic codes, J. Comput. Phys. 321 (2016) 1110.10.1016/j.jcp.2016.06.004
    [130]
    V. Ritus, Quantum effects of the interaction of elementary particles with an intense electromagnetic field, J. Sov. Laser Res. 6 (1985) 497.10.1007/bf01120220
    [131]
    S. Bulanov, T. Esirkepov, Y. Hayashi, M. Kando, H. Kiriyama, et al., On the design of experiments for the study of extreme field limits in the interaction of laser with ultrarelativistic electron beam, Nucl. Instrum. Methods Phys. Res., Sect. A 660 (2011) 31.10.1016/j.nima.2011.09.029
    [132]
    G. Lowenthal, P. Airey, Practical Applications of Radioactivity and Nuclear Radiations: An Introductory Text for Engineers, Scientists, Teachers, and Students, Cambridge University Press, Cambridge ; New York, 2001.
    [133]
    T. Nakamura, J. Koga, T. Esirkepov, M. Kando, G. Korn, et al., High-power γ-ray flash generation in ultraintense laser-plasma interaction, Phys. Rev. Lett. 108 (2012) 195001.10.1103/physrevlett.108.195001
    [134]
    D. Thompson, Highlights of GeV gamma-ray astronomy, Astrophys. Space Sci. Trans. 6 (2010) 59.10.5194/astra-6-59-2010
    [135]
    J. Wardle, D. Homan, R. Ojha, D. Roberts, Electron-positron jets associated with the quasar 3c279, Nature 395 (1998) 457.10.1038/26675
    [136]
    F.A. Aharonian, A.G. Akhperjanian, K.-M. Aye, A.R. Bazer-Bachi, M. Beilicke, et al., High-energy particle acceleration in the shell of a supernova remnant, Nature 432 (2004) 75.
    [137]
    Y. Lau, F. He, D. Umstadter, R. Kowalczyk, Nonlinear Thomson scattering: a tutorial, Phys. Plasmas 10 (2003) 2155.10.1063/1.1565115
    [138]
    R. Capdessus, E. d’Humières, V.T. Tikhonchuk, Influence of ion mass on laser-energy absorption and synchrotron radiation at ultrahigh laser intensities, Phys. Rev. Lett. 110 (2013) 215003.10.1103/physrevlett.110.215003
    [139]
    D.J. Stark, T. Toncian, A.V. Arefiev, Enhanced multi-mev photon emission by a laser-driven electron beam in a self-generated magnetic field, Phys. Rev. Lett. 116 (2016) 185003.10.1103/physrevlett.116.185003
    [140]
    K. Ta Phuoc, S. Corde, C. Thaury, V. Malka, A. Tafzi, et al., All-optical compton gamma-ray source, Nat. Photonics 6 (2012) 308.10.1038/nphoton.2012.82
    [141]
    L.M. Chen, W.C. Yan, D.Z. Li, Z.D. Hu, L. Zhang, et al., Bright betatron x-ray radiation from a laser-driven-clustering gas target, Sci. Rep. 3 (2013) 1912.10.1038/srep01912
    [142]
    N.D. Powers, I. Ghebregziabher, G. Golovin, C. Liu, S. Chen, et al., Quasi-monoenergetic and tunable x-rays from a laser-driven compton light source, Nat. Photonics 8 (2014) 28.10.1038/nphoton.2013.314
    [143]
    G. Sarri, D.J. Corvan, W. Schumaker, J.M. Cole, A. Di Piazza, et al., Ultrahigh brilliance multi-mev γ-ray beams from nonlinear relativistic thomson scattering, Phys. Rev. Lett. 113 (2014) 224801.10.1103/physrevlett.113.224801
    [144]
    K. Khrennikov, J. Wenz, A. Buck, J. Xu, M. Heigoldt, et al., Tunable all-optical quasimonochromatic thomson x-ray source in the nonlinear regime, Phys. Rev. Lett. 114 (2015) 195003.10.1103/physrevlett.114.195003
    [145]
    A.G.R. Thomas, C.P. Ridgers, S.S. Bulanov, B.J. Griffin, S.P.D. Mangles, Strong radiation-damping effects in a gamma-ray source generated by the interaction of a high-intensity laser with a wakefield-accelerated electron beam, Phys. Rev. X 2 (2012) 041004.10.1103/physrevx.2.041004
    [146]
    M. Vranic, J.L. Martins, J. Vieira, R.A. Fonseca, L.O. Silva, All-optical radiation reaction at 1021 W/cm2., Phys. Rev. Lett. 113 (2014) 134801.10.1103/physrevlett.113.134801
    [147]
    J. Schwinger, On gauge invariance and vacuum polarization, Phys. Rev. 82 (1951) 664.10.1103/physrev.82.664
    [148]
    N. Neitz, A. Di Piazza, Stochasticity effects in quantum radiation reaction, Phys. Rev. Lett. 111 (2013) 054802.10.1103/physrevlett.111.054802
    [149]
    T.G. Blackburn, C.P. Ridgers, J.G. Kirk, A.R. Bell, Quantum radiation reaction in laser-electron-beam collisions, Phys. Rev. Lett. 112 (2014) 015001.10.1103/physrevlett.112.015001
    [150]
    S.R. Yoffe, Y. Kravets, A. Noble, D.A. Jaroszynski, Longitudinal and transverse cooling of relativistic electron beams in intense laser pulses, New J. Phys. 17 (2015) 053025.10.1088/1367-2630/17/5/053025
    [151]
    M. Vranic, T. Grismayer, R.A. Fonseca, L.O. Silva, Quantum radiation reaction in head-on laser-electron beam interaction, New J. Phys. 18 (2016) 073035.10.1088/1367-2630/18/7/073035
    [152]
    Y. Gu, O. Klimo, S. Weber, G. Korn, High density ultrashort relativistic positron beam generation by laser-plasma interaction, New J. Phys. 18 (2016) 113023.10.1088/1367-2630/18/11/113023
    [153]
    S. Bulanov, C. Schroeder, E. Esarey, W. Leemans, Electromagnetic cascade in high-energy electron, positron, and photon interactions with intense laser pulses, Phys. Rev. A 87 (2013) 062110.10.1103/physreva.87.062110
    [154]
    G. Breit, J.A. Wheeler, Collision of two light quanta, Phys. Rev. 46 (1934) 1087.10.1103/physrev.46.1087
    [155]
    D.L. Burke, R.C. Field, G. Horton-Smith, J.E. Spencer, D. Walz, et al., Positron production in multiphoton light-by-light scattering, Phys. Rev. Lett. 79 (1997) 1626.10.1103/physrevlett.79.1626
    [156]
    A.R. Bell, J.G. Kirk, Possibility of prolific pair production with high-power lasers, Phys. Rev. Lett. 101 (2008) 200403.10.1103/physrevlett.101.200403
    [157]
    S.S. Bulanov, N.B. Narozhny, V.D. Mur, V.S. Popov, Electron-positron pair production by electromagnetic pulses, J. Exp. Theor. Phys. 102 (2006) 9.10.1134/s106377610601002x
    [158]
    M. Jirka, O. Klimo, S.V. Bulanov, T.Zh. Esirkepov, E. Gelfer, et al., Electron dynamics and γ and e+e−production by colliding laser pulses, Phys. Rev. E 93 (2016) 023207.10.1103/physreve.93.023207
    [159]
    T. Grismayer, M. Vranic, J.L. Martins, R.A. Fonseca, L.O. Silva, Laser absorption via quantum electrodynamics cascades in counter propagating laser pulses, Phys. Plasmas 23 (2016) 056706.10.1063/1.4950841
    [160]
    E.G. Gelfer, A.A. Mironov, A.M. Fedotov, V.F. Bashmakov, I.Y. Kostyukov, et al., Perspectives of implementing QED cascade production with the next generation of laser facilities, J. Phys.: Conf. Ser. 594 (2015) 012054.10.1088/1742-6596/594/1/012054
    [161]
    M. Vranic, T. Grismayer, R.A. Fonseca, L.O. Silva, Electron-positron cascades in multiple-laser optical traps, Plasma Phys. Controlled Fusion 59 (2016) 014040.10.1088/0741-3335/59/1/014040
    [162]
    E. Gelfer, H. Kadlecova, O. Klimo, S. Weber, G. Korn, Gravitational waves generated by laser accelerated relativistic ions, Phys. Plasmas 23 (2016) 093107.10.1063/1.4962520
    [163]
    A. Faenov, J. Colgan, S. Hansen, A. Zhidkov, T. Pikuz, et al., Nonlinear increase of x-ray intensities from thin foils irradiated with a 200 tw femtosecond laser, Sci. Rep. 5 (2015) 13436.10.1038/srep13436
    [164]
    Y. Zou, R. Hutton, F. Currell, I. Martinson, S. Hagmann (Eds.), Handbook for Highly Charged Ion Spectroscopic Research, Taylor & Francis Inc, 20 September 2011. ISBN-10: 1420079042, ISBN-13: 978-1420079043.
    [165]
    A. Faenov, I. Skobelev, T. Pikuz, S. Pikuz, R. Kodama, et al., Diagnostics of warm dense matter by high-resolution x-ray spectroscopy of hollow ions, Laser Part. Beams 33 (2015) 27.10.1017/s0263034614000743
    [166]
    J. Colgan, J. Abdallah, A. Faenov, S. Pikuz, E. Wagenaars, et al., Exotic dense matter states pumped by relativistic laser plasma in the radiation dominant regime, Phys. Rev. Lett. 110 (2014) 125001.
    [167]
    F. Rosmej, R. Dachicourt, B. Deschaud, D. Khaghani, M. Dozieres, et al., Exotic x-ray emission from dense plasmas, J. Phys. B: At., Mol. Opt. Phys. 48 (2015) 224005.10.1088/0953-4075/48/22/224005
    [168]
    E. Galtier, A. Moinard, F. Khattak, O. Renner, T. Robert, et al., High resolution x-ray imaging of k-alpha radiation induced by high intensity laser pulse interaction with a copper target, J. Phys. B: At., Mol. Opt. Phys. 45 (2012) 205701.10.1088/0953-4075/45/20/205701
    [169]
    F. Condamine, R. Lotzsch, I. Uschmann, O. Renner, O. Klimo, et al., Ultra-fast dynamics of charge state distribution driven by suprathermal electrons generated from laser solid matter interaction at relativistic laser intensities, (to be submitted).
    [170]
    O. Renner, R. Liska, F. Rosmej, Laser-produced plasma-wall interaction, Laser Part. Beams 27 (2009) 725.10.1017/s0263034609990504
    [171]
    E. Oks, Plasma Spectroscopy: The Influence of Microwave and Laser Fields, Springer Verlag, Berlin, 1995.
    [172]
    M. Tatarakis, I. Watts, F. Beg, E. Clark, A. Dangor, et al., Laser technology: measuring huge magnetic fields, Nature 415 (2002) 280.10.1038/415280a
    [173]
    O. Renner, P. Sauvan, E. Dalimier, C. Riconda, F. Rosmej, et al., Signature of externally introduced laser fields in x-ray emission of multicharged ions, High Energy Density Phys. 5 (2009) 139.10.1016/j.hedp.2009.04.013
    [174]
    S. Ferri, A. Calisti, C. Mosse, L. Mouret, B. Talin, et al., Frequency-fluctuation model applied to stark-zeeman spectral line shapes in plasmas, Phys. Rev. E 84 (2011) 026407.10.1103/physreve.84.026407
    [175]
    E. Stambulchik, Y. Maron, Zeeman effect induced by strong laser light, Phys. Rev. Lett. 113 (2014) 083002.10.1103/physrevlett.113.083002
    [176]
    R. Loetzsch, O. Jäckel, S. Höfer, T. Kämpfer, J. Polz, et al., K-shell spectroscopy of silicon ions as diagnostic for high electric fields, Rev. Sci. Instrum. 83 (2012) 113507.10.1063/1.4767452
    [177]
    G. Fiksel, W. Fox, A. Bhattacharjee, D.H. Barnak, P.-Y. Chang, et al., Magnetic reconnection between colliding magnetized laser-produced plasma plumes, Phys. Rev. Lett. 113 (2014) 105003.10.1103/physrevlett.113.105003
    [178]
    B. Albertazzi, A. Ciardi, M. Nakatsutsumi, T. Vinci, J. Beard, et al., Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field, Science 346 (2014) 325.10.1126/science.1259694
    [179]
    O.V. Gotchev, J.P. Knauer, P.Y. Chang, N.W. Jang, M.J. Shoup III, et al., Seeding magnetic fields for laser-driven flux compression in high-energy-density plasmas, Rev. Sci. Instrum. 80 (2009) 043504.10.1063/1.3115983
    [180]
    P.Y. Chang, G. Fiksel, M. Hohenberger, J.P. Knauer, R. Betti, et al., Fusion yield enhancement in magnetized laser-driven implosions, Phys. Rev. Lett. 107 (2011) 035006.10.1103/physrevlett.107.035006
    [181]
    K.B. Fournier, J.D. Moody, Report on the B-fields at NIF workshop held at LLNL October 12–13, 2015, Tech. Rep. Lawrence Livermore Natl. Lab., 2016. URL:https://lasers.llnl.gov/content/assets/docs/for-users/report_on_the_b-field_workshop.pdf.
    [182]
    G. Fiksel, A. Agliata, D. Barnak, G. Brent, P.-Y. Chang, et al., Note: experimental platform for magnetized high-energy-density plasma studies at the omega laser facility, Rev. Sci. Instrum. 86 (2015) 016105.10.1063/1.4905625
    [183]
    B.B. Pollock, D.H. Froula, P.F. Davis, J.S. Ross, S. Fulkerson, et al., High magnetic field generation for laser-plasma experiments, Rev. Sci. Instrum. 77 (2006) 114703.10.1063/1.2356854
    [184]
    S.P. Hatchett, C.G. Brown, T.E. Cowan, E.A. Henry, J.S. Johnson, et al., Electron, photon, and ion beams from the relativistic interaction of petawatt laser pulses with solid targets, Phys. Plasmas 7 (2000) 2076.10.1063/1.874030
    [185]
    P.A. Norreys, M. Santala, E. Clark, M. Zepf, I. Watts, et al., Observation of a highly directional γ-ray beam from ultrashort, ultraintense laser pulse interactions with solids, Phys. Plasmas 6 (1999) 2150.10.1063/1.873466
    [186]
    C.D. Chen, J.A. King, M.H. Key, K.U. Akli, F.N. Beg, et al., A bremsstrahlung spectrometer using k-edge and differential filters with image plate dosimeters, Rev. Sci. Instrum. 79 (2008) 10E305.10.1063/1.2964231
    [187]
    J.H. Jeon, K. Nakajima, H.T. Kim, Y.J. Rhee, V.B. Pathak, et al., A broadband gamma-ray spectrometry using novel unfolding algorithms for characterization of laser wakefield-generated betatron radiation, Rev. Sci. Instrum. 86 (2015) 123116.10.1063/1.4939014
    [188]
    S. Sakata, Y. Arikawa, S. Kojima, T. Ikenouchi, T. Nagai, et al., Photonuclear reaction based high-energy x-ray spectrometer to cover from 2 MeV to 20 MeV, Rev. Sci. Instrum. 85 (2014) 11D629.10.1063/1.4893943
    [189]
    M.A. Espy, A. Gehring, A. Belian, T. Haines, J. Hunter, et al., A wide-acceptance compton spectrometer for spectral characterization of a medical x-ray source, Proc. SPIE 9783 (2016) 97834V.
    [190]
    S. Singh, A. L. Garcia, A. Ferrari, M. Molodtsova, L. Morejon, et al., Absolute calibration of a compact gamma-ray spectrometer for high intensity laser plasma experiments (In preparation).
    [191]
    S. Kneip, C. McGuffey, J. Martins, C. Bellei, V. Chvykov, et al., Bright spatially coherent synchrotron X-rays from a table-top source, Nat. Phys. 6 (2010) 980.10.1038/nphys1789
    [192]
    Z. Najmudin, S. Kneip, M.S. Bloom, S.P.D. Mangles, O. Chekhlov, et al., Compact laser accelerators for x-ray phase-contrast imaging, Philo. Trans. Royal Soc. London a: Mathematical, Physical and Engineering Sciences 372 (2014).
    [193]
    F. Dorchies, V. Recoules, J. Bouchet, C. Fourment, P.M. Leguay, et al., Time evolution of electron structure in femtosecond heated warm dense molybdenum, Phys. Rev. B 92 (2015) 144201.10.1103/physrevb.92.144201
    [194]
    A. Poyé, S. Hulin, M. Bailly-Grandvaux, J. Dubois, J. Ribolzi, et al., Physics of giant electromagnetic pulse generation in short-pulse laser experiments, Phys. Rev. E 91 (2015) 043106.10.1103/physreve.91.043106
    [195]
    A. Poyé, J. Dubois, F. Lubrano-Lavaderci, E. D'Humiéres, M. Bardon, et al., Dynamic model of target charging by short laser pulse interactions, Phys. Rev. E 92 (2015) 043107.10.1103/physreve.92.043107
    [196]
    J. Dubois, F. Lubrano-Lavaderci, D. Raffestin, J. Ribolzi, J. Gazave, . Tikhonchuk, et al., Target charging in short-pulse-laser-plasma experiments, Phys. Rev. E 89 (2014) 013102.10.1103/physreve.89.013102
    [197]
    C. Stoeckl, V. Glebov, P. Jaanimagi, J. Knauer, D. Meyerhofer, et al., Operation of target diagnostics in a petawatt laser environment (invited), Rev. Sci. Instrum. 77 (2006) 10F506.10.1063/1.2217922
    [198]
    M. DeMarco, J. Krasa, J. Cikhardt, M. Pfeifer, E. Krousky, et al., Measurement of electromagnetic pulses generated during interactions of high power lasers with solid targets, J. Instrum. 11 (2016) C06004.10.1088/1748-0221/11/06/c06004
    [199]
    M. Mead, D. Neely, J. Gauoin, R. Heathcote, P. Patel, Electromagnetic pulse generation within a petawatt laser target chamber, Rev. Sci. Instrum. 75 (2004) 4225.10.1063/1.1787606
    [200]
    Virtual Lab from Lighttrans: http://www.lighttrans.com.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(43)  / Tables(2)

    Article Metrics

    Article views (361) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return