Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 2 Issue 2
Mar.  2017
Turn off MathJax
Article Contents
Campbell E.M., Goncharov V.N., Sangster T.C., Regan S.P., Radha P.B., Betti R., Myatt J.F., Froula D.H., Rosenberg M.J., Igumenshchev I.V., Seka W., Solodov A.A., Maximov A.V., Marozas J.A., Collins T.J.B., Turnbull D., Marshall F.J., Shvydky A., Knauer J.P., McCrory R.L., Sefkow A.B., Hohenberger M., Michel P.A., Chapman T., Masse L., Goyon C., Ross S., Bates J.W., Karasik M., Oh J., Weaver J., Schmitt A.J., Obenschain K., Obenschain S.P., Reyes S., Van Wonterghem B.. Laser-direct-drive program: Promise, challenge, and path forward[J]. Matter and Radiation at Extremes, 2017, 2(2). doi: 10.1016/j.mre.2017.03.001
Citation: Campbell E.M., Goncharov V.N., Sangster T.C., Regan S.P., Radha P.B., Betti R., Myatt J.F., Froula D.H., Rosenberg M.J., Igumenshchev I.V., Seka W., Solodov A.A., Maximov A.V., Marozas J.A., Collins T.J.B., Turnbull D., Marshall F.J., Shvydky A., Knauer J.P., McCrory R.L., Sefkow A.B., Hohenberger M., Michel P.A., Chapman T., Masse L., Goyon C., Ross S., Bates J.W., Karasik M., Oh J., Weaver J., Schmitt A.J., Obenschain K., Obenschain S.P., Reyes S., Van Wonterghem B.. Laser-direct-drive program: Promise, challenge, and path forward[J]. Matter and Radiation at Extremes, 2017, 2(2). doi: 10.1016/j.mre.2017.03.001

Laser-direct-drive program: Promise, challenge, and path forward

doi: 10.1016/j.mre.2017.03.001
More Information
  • Corresponding author: *Corresponding author. E-mail address: mcamp@lle.rochester.edu (E.M. Campbell).
  • Received Date: 2017-01-25
  • Accepted Date: 2017-03-07
  • Publish Date: 2017-03-15
  • Along with laser-indirect (X-ray)-drive and magnetic-drive target concepts, laser direct drive is a viable approach to achieving ignition and gain with inertial confinement fusion. In the United States, a national program has been established to demonstrate and understand the physics of laser direct drive. The program utilizes the Omega Laser Facility to conduct implosion and coupling physics at the nominally 30-kJ scale and laser–plasma interaction and coupling physics at the MJ scale at the National Ignition Facility. This article will discuss the motivation and challenges for laser direct drive and the broad-based program presently underway in the United States.
  • loading
  • [1]
    J. Nuckolls, L. Wood, A. Thiessen, G. Zimmerman, Laser compression of matter to super-high densities: thermonuclear (CTR) applications, Nature 239 (1972) 139.10.1038/239139a0
    [2]
    S. Atzeni, J. Meyer-ter-Vehn, The Physics of Inertial Fusion: Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter, International Series of Monographs on Physics, Clarendon, Oxford, 2004.
    [3]
    R.S. Craxton, K.S. Anderson, T.R. Boehly, V.N. Goncharov, D.R. Harding, et al., Direct-drive inertial confinement fusion: a review, Phys. Plasmas 22 (2015) 110501.10.1063/1.4934714
    [4]
    J.D. Lindl, Inertial Confinement Fusion: The Quest for Ignition and Energy Gain Using Indirect Drive, Springer-Verlag, New York, 1998.
    [5]
    S.A. Slutz, M.C. Herrmann, R.A. Vesey, A.B. Sefkow, D.B. Sinars, et al., Pulsed-power-driven cylindrical liner implosions of laser preheated fuel magnetized with an axial field, Phys. Plasmas 17 (2010) 056303.10.1063/1.3333505
    [6]
    R.M. White, D.A. Resler, S.I. Warshaw, Evaluation of charged-particle reactions for fusion applications, in: S.M. Qaim (Ed.), Nuclear Data for Science and Technology, Springer-Verlag, Berlin, 1991, p. 834.
    [7]
    H.-S. Bosch, G.M. Hale, Improved formulas for fusion cross-sections and thermal reactivities, Nucl. Fusion 32 (1992) 611.10.1088/0029-5515/32/4/i07
    [8]
    O.A. Hurricane, D.A. Callahan, D.T. Casey, P.M. Celliers, C. Cerjan, et al., Fuel gain exceeding unity in an inertially confined fusion implosion, Nature 506 (2014) 343.10.1038/nature13008
    [9]
    A.L. Velikovich, J.L. Giuliani, S.T. Zalesak, Magnetic flux and heat losses by diffusive, convective, and Nernst effects in MagLIF-like plasma, in: 2014 IEEE 41st International Conference on Plasma Sciences (ICOPS) Held with 2014 IEEE International Conference on High-power Particle Beams (BEAMS), IEEE, Washington, DC, 2014.
    [10]
    D.S. Montgomery, B.J. Albright, D.H. Barnak, P.Y. Chang, J.R. Davies, et al., Use of external magnetic fields in hohlraum plasmas to improve laser-coupling, Phys. Plasmas 22 (2015) 010703.10.1063/1.4906055
    [11]
    P.Y. Chang, G. Fiksel, M. Hohenberger, J.P. Knauer, R. Betti, et al., Fusion yield enhancement in magnetized laser-driven implosions, Phys. Rev. Lett. 107 (2011) 035006.10.1103/PhysRevLett.107.035006
    [12]
    W.J. Hogan, R. Bangerter, G.L. Kulcinski, Energy from inertial fusion, Phys. Today 45 (1992) 42.10.1063/1.881319
    [13]
    E.M. Campbell, W.J. Hogan, The National Ignition Facility—applications for inertial fusion energy and high-energy-density science, Plasma Phys. Controlled Fusion 41 (1999) B39.10.1088/0741-3335/41/12B/303
    [14]
    J.M. Soures, R.L. McCrory, C.P. Verdon, A. Babushkin, R.E. Bahr, et al., Direct-drive laser-fusion experiments with the OMEGA, 60-beam, >40-kJ, ultraviolet laser system, Phys. Plasmas 3 (1996) 2108.10.1063/1.871662
    [15]
    M.E. Savage, K.R. LeChien, M.R. Lopez, B.S. Stoltzfus, W.A. Stygar, et al., Status of the Z pulsed power driver, in: 18th IEEE International Pulsed Power Conference, Omnipress, Piscataway, NJ, 2011, p. 983.
    [16]
    S. Obenschain, S. Bodner, R. Lehmberg, A. Mostovych, C. Pawley, et al., Nike KrF laser development for direct drive laser fusion, in: Plasma Physics and Controlled Nuclear Fusion Research 1990, vol. 3, IAEA, Vienna, 1991, p. 153.
    [17]
    J.T. Hunt, D.R. Speck, Present and future performance of the Nova laser system, Opt. Eng. 28 (1989) 461.10.1117/12.7976974
    [18]
    2016 Inertial Confinement Fusion Program Framework, Office of Science and National Nuclear Security Administration, U.S. Department of Energy, Washington, DC, 2016. Report DOE/NA-0044.
    [19]
    M. Tabak, J. Hammer, M.E. Glinsky, W.L. Kruer, S.C. Wilks, et al., Ignition and high gain with ultrapowerful lasers, Phys. Plasmas 1 (1994) 1626, 10.1063/1.870664
    [20]
    R. Betti, C.D. Zhou, K.S. Anderson, L.J. Perkins, W. Theobald, et al., Shock ignition of thermonuclear fuel with high areal density, Phys. Rev. Lett. 98 (2007) 155001.10.1103/PhysRevLett.98.155001
    [21]
    P. Amendt, J.D. Colvin, R.E. Tipton, D.E. Hinkel, M.J. Edwards, et al., Indirect-drive noncryogenic double-shell ignition targets for the National Ignition Facility: design and analysis, Phys. Plasmas 9 (2002) 2221.10.1063/1.1459451
    [22]
    K. Molvig, M.J. Schmitt, B.J. Albright, E.S. Dodd, N.M. Hoffman, et al., Low fuel convergence path to direct-drive fusion ignition, Phys. Rev. Lett. 116 (2016) 255003.10.1103/PhysRevLett.116.255003
    [23]
    R.F. Smith, J.H. Eggert, R. Jeanloz, T.S. Duffy, D.G. Braun, et al., Ramp compression of diamond to five terapascals, Nature 511 (2014) 330.10.1038/nature13526
    [24]
    V.N. Goncharov, S.P. Regan, E.M. Campbell, T.C. Sangster, P.B. Radha, et al., National direct-drive program on OMEGA and the national ignition facility, Plasma Phys. Controlled Fusion 59 (2017) 014008.10.1088/0741-3335/59/1/014008
    [25]
    W.L. Kruer, The physics of laser plasma interactions: in: D. Pines (Ed.), Frontiers in Physics, vol. 73, Westview, Boulder, CO, 2003.
    [26]
    C.J. Randall, J.R. Albritton, J.J. Thomson, Theory and simulation of stimulated Brillouin scatter excited by nonabsorbed light in laser fusion systems, Phys. Fluids 24 (1981) 1474.10.1063/1.863551
    [27]
    R. Betti, O.A. Hurricane, Inertial-confinement fusion with lasers, Nat. Phys. 12 (2016) 435.10.1038/nphys3736
    [28]
    J.F. Myatt, J. Zhang, R.W. Short, A.V. Maximov, W. Seka, et al., Multiple-beam laser–plasma interactions in inertial confinement fusion, Phys. Plasmas 21 (2014) 055501.10.1063/1.4878623
    [29]
    D.T. Michel, A.V. Maximov, R.W. Short, J.A. Delettrez, D. Edgell, et al., Measured hot-electron intensity thresholds quantified by a two-plasmon-decay resonant common-wave gain in various experimental configurations, Phys. Plasmas 20 (2013) 055703.10.1063/1.4803090
    [30]
    P. Michel, L. Divol, E.L. Dewald, J.L. Milovich, M. Hohenberger, et al., Phys. Rev. Lett. 115 (2015) 055003.10.1103/PhysRevLett.115.055003
    [31]
    D.S. Montgomery, Two decades of progress in understanding and control of laser plasma instabilities in indirect drive inertial fusion, Phys. Plasmas 23 (2016) 055601.10.1063/1.4946016
    [32]
    J.D. Lindl, O.L. Landen, J. Edwards, E.I. Moses, J. Adams, et al., Erratum: ‘Review of the national ignition campaign 2009–2012’ [Phys. Plasmas 21, 020501 (2014)];10.1063/1.4903459 doi: 10.1063/1.2402917
    [33]
    D.E. Hinkel, L.F. Berzak Hopkins, T. Ma, J.E. Ralph, F. Albert, et al., Development of improved radiation drive environment for high foot implosions at the National Ignition Facility, Phys. Rev. Lett. 117 (2016) 225002.10.1103/PhysRevLett.117.225002
    [34]
    R.J. Leeper, G.A. Chandler, G.W. Cooper, M.S. Derzon, D.L. Fehl, et al., Target diagnostic system for the national ignition facility, Rev. Sci. Instrum. 68 (1997) 868.10.1063/1.1147917
    [35]
    H. Sio, J.A. Frenje, J. Katz, C. Stoeckl, D. Weiner, et al., A particle X-ray temporal diagnostic (PXTD) for studies of kinetic, multi-ion effects, and ion-electron equilibration rates in inertial confinement fusion plasmas at OMEGA (invited), Rev. Sci. Instrum. 87 (2016) 11D701.10.1063/1.4961552
    [36]
    D.T. Michel, V.N. Goncharov, I.V. Igumenshchev, R. Epstein, D.H. Froula, Demonstration of the improved rocket efficiency in direct-drive implosions using different ablator materials, Phys. Rev. Lett. 111 (2013) 245005.10.1103/PhysRevLett.111.245005
    [37]
    D.S. Clark, M.M. Marinak, C.R. Weber, D.C. Eder, S.W. Haan, et al., Radiation hydrodynamics modeling of the highest compression inertial confinement fusion ignition experiment from the national ignition campaign, Phys. Plasmas 22 (2015) 022703.10.1063/1.4906897
    [38]
    W. Seka, D.H. Edgell, J.P. Knauer, J.F. Myatt, A.V. Maximov, et al., Time-resolved absorption in cryogenic and room-temperature direct-drive implosions, Phys. Plasmas 15 (2008) 056312.10.1063/1.2898405
    [39]
    J. Zhang, J.F. Myatt, R.W. Short, A.V. Maximov, H.X. Vu, et al., Multiple beam two-plasmon decay: linear threshold to nonlinear saturation in three dimensions, Phys. Rev. Lett. 113 (2014) 105001.10.1103/PhysRevLett.113.105001
    [40]
    B. Yaakobi, A.A. Solodov, J.F. Myatt, J.A. Delettrez, C. Stoeckl, et al., Measurements of the divergence of fast electrons in laser-irradiated spherical targets, Phys. Plasmas 20 (2013) 092706.10.1063/1.4824008
    [41]
    G. Taylor, The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I, Proc. R. Soc. Lond. Ser. A 201 (1950) 192.10.1098/rspa.1950.0052
    [42]
    R. Epstein, S. Skupsky, Anticipated improvement in laser beam uniformity using distributed phase plates with quasirandom patterns, J. Appl. Phys. 68 (1990) 924.10.1063/1.346655
    [43]
    R.H. Lehmberg, A.J. Schmitt, S.E. Bodner, Theory of induced spatial incoherence, J. Appl. Phys. 62 (1987) 2680.10.1063/1.339419
    [44]
    S. Skupsky, R.W. Short, T. Kessler, R.S. Craxton, S. Letzring, et al., Improved laser-beam uniformity using the angular dispersion of frequency-modulated light, J. Appl. Phys. 66 (1989) 3456.10.1063/1.344101
    [45]
    J.E. Rothenberg, Polarization beam smoothing for inertial confinement fusion, J. Appl. Phys. 87 (2000) 3654.10.1063/1.372395
    [46]
    V.N. Goncharov, J.P. Knauer, P.W. McKenty, P.B. Radha, T.C. Sangster, et al., Improved performance of direct-drive inertial confinement fusion target designs with adiabat shaping using an intensity picket, Phys. Plasmas 10 (2003) 1906.10.1063/1.1562166
    [47]
    A. Bose, K.M. Woo, R. Betti, E.M. Campbell, D. Mangino, et al., Core conditions for alpha heating attained in direct-drive inertial confinement fusion, Phys. Rev. E 94 (2016), 011201(R) 10.1103/PhysRevE.94.011201
    [48]
    R. Nora, R. Betti, K.S. Anderson, A. Shvydky, A. Bose, et al., Theory of hydro-equivalent ignition for inertial fusion and its applications to OMEGA and the National Ignition Facility, Phys. Plasmas 21 (2014) 056316.10.1063/1.4875331
    [49]
    S.P. Regan, V.N. Goncharov, I.V. Igumenshchev, T.C. Sangster, R. Betti, et al., Phys. Rev. Lett. 117 (2016) 025001;10.1103/PhysRevLett.117.025001 doi: 10.1103/PhysRevLett.117.059903
    [50]
    I.V. Igumenshchev, V.N. Goncharov, F.J. Marshall, J.P. Knauer, E.M. Campbell, et al., Three-dimensional modeling of direct-drive cryogenic implosions on OMEGA, Phys. Plasmas 23 (2016) 052702.10.1063/1.4948418
    [51]
    P.B. Radha, M. Hohenberger, D.H. Edgell, J.A. Marozas, F.J. Marshall, et al., Direct drive: simulations and results from the national ignition facility, Phys. Plasmas 23 (2016) 056305.10.1063/1.4946023
    [52]
    J.H. Kelly, A. Shvydky, J.A. Marozas, M.J. Guardalben, B.E. Kruschwitz, et al., Simulations of the propagation of multiple-FM smoothing by spectral dispersion on OMEGA EP, in: Proc. SPIE 8602, 2013, p. 86020D.10.1117/12.2003209
    [53]
    S.P. Obenschain, D.G. Colombant, M. Karasik, C.J. Pawley, V. Serlin, et al., Effects of thin high-Z layers on the hydrodynamics of laser-accelerated plastic targets, Phys. Plasmas 9 (2002) 2234.10.1063/1.1464541
    [54]
    T.J.B. Collins, J.A. Marozas, K.S. Anderson, R. Betti, R.S. Craxton, et al., A polar-drive–ignition design for the National Ignition Facility, Phys. Plasmas 19 (2012) 056308,10.1063/1.3693969
    [55]
    F.J. Marshall, P.B. Radha, M.J. Bonino, J.A. Delettrez, R. Epstein, et al., Polar-direct-drive experiments with contoured-shell targets on OMEGA, Phys. Plasmas 23 (2016) 012711.10.1063/1.4940939
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Article Metrics

    Article views (149) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return