Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 2 Issue 3
May  2017
Turn off MathJax
Article Contents
Yuan Hongsheng, Zhang Li. In situ determination of crystal structure and chemistry of minerals at Earth's deep lower mantle conditions[J]. Matter and Radiation at Extremes, 2017, 2(3). doi: 10.1016/j.mre.2017.01.002
Citation: Yuan Hongsheng, Zhang Li. In situ determination of crystal structure and chemistry of minerals at Earth's deep lower mantle conditions[J]. Matter and Radiation at Extremes, 2017, 2(3). doi: 10.1016/j.mre.2017.01.002

In situ determination of crystal structure and chemistry of minerals at Earth's deep lower mantle conditions

doi: 10.1016/j.mre.2017.01.002
More Information
  • Corresponding author: * Corresponding author. E-mail address: hongsheng.yuan@hpstar.ac.cn (H.S. Yuan).
  • Received Date: 2016-10-10
  • Accepted Date: 2017-01-24
  • Available Online: 2021-12-07
  • Publish Date: 2017-05-15
  • Recent advances in experimental techniques and data processing allow in situ determination of mineral crystal structure and chemistry up to Mbar pressures in a laser-heated diamond anvil cell (DAC), providing the fundamental information of the mineralogical constitution of our Earth's interior. This work highlights several recent breakthroughs in the field of high-pressure mineral crystallography, including the stability of bridgmanite, the single-crystal structure studies of post-perovskite and H-phase as well as the identification of hydrous minerals and iron oxides in the deep lower mantle. The future development of high-pressure crystallography is also discussed.
  • loading
  • [1]
    A.M. Dziewonski, D.L. Anderson, Preliminary reference Earth model, Phys. Earth Planet. Inter. 25 (4) (1981) 297–356.10.1016/0031-9201(81)90046-7
    [2]
    W.F. McDonough, S.S. Sun, The composition of the Earth, Chem. Geol. 120 (3–4) (1995) 223–253.10.1016/0009-2541(94)00140-4
    [3]
    L. Zhang, Y. Meng, P. Dera, W. Yang, W.L. Ma, et al., Single-crystal structure determination of (Mg, Fe) SiO3 postperovskite, Proc. Natl. Acad. Sci. U. S. A. 110 (16) (2013) 6292–6295.10.1073/pnas.1304402110
    [4]
    L. Zhang, Y. Meng, W. Yang, L. Wang, W.L. Mao, et al., Disproportionation of (Mg, Fe) SiO3 perovskite in Earth's deep lower mantle, Science 344 (6186) (2014) 877–882.10.1126/science.1250274
    [5]
    R.D. van der Hilst, M.V. de Hoop, P. Wang, S.H. Shim, P. Ma, et al., Seismostratigraphy and thermal structure of Earth's core-mantle boundary region, Science 315 (5820) (2007) 1813–1817.10.1126/science.1137867
    [6]
    K. Hirose, Postperovskite phase transition and its geophysical implications, Rev. Geophys. 44 (3) (2006) RG3001.10.1029/2005rg000186
    [7]
    S.H. Shim, The postperovskite transition, Annu. Rev. Earth Planet. Sci. 36 (12) (2008) 569–599.10.1146/annurev.earth.36.031207.124309
    [8]
    I. Sidorin, M. Gurnis, D.V. Helmberger, Discontinuity at the base of the mantle, Science 286 (5443) (1999) 1326–1331.10.1126/science.286.5443.1326
    [9]
    M. Murakami, K. Hirose, K. Kawamura, N. Sata, Y. Ohishi, Post-perovskite phase transition in MgSiO3, Science 304 (5672) (2004) 855–858.10.1126/science.1095932
    [10]
    S.-H. Shim, T. Lay, Post-perovskite at ten, Nat. Geosci. 7 (9) (2014) 621–623.10.1038/ngeo2237
    [11]
    A.R. Oganov, S. Ono, Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in Earth's D' layer, Nature 430 (6998) (2004) 445–448.10.1038/nature02701
    [12]
    T. Tsuchiya, J. Tsuchiya, K. Umemoto, R.M. Wentzcovitch, Phase transition in MgSiO3 perovskite in the earth's lower mantle, Earth Planet. Sci. Lett. 224 (3–4) (2004) 241–248.10.1016/j.epsl.2004.05.017
    [13]
    D.R. Hummer, Y. Fei, Synthesis and crystal chemistry of Fe3+-bearing (Mg,Fe3+)(Si,Fe3+)O3 perovskite, Am. Mineral. 97 (11–12) (2012) 1915–1921.10.2138/am.2012.4144
    [14]
    T.B. Ballaran, A. Kurnosov, K. Glazyrin, D.J. Frost, M. Merlini, et al., Effect of chemistry on the compressibility of silicate perovskite in the lower mantle, Earth Planet. Sci. Lett. 333–334 (2012) 181–190.10.1016/j.epsl.2012.03.029
    [15]
    J.-F. Lin, Z. Mao, J. Yang, J. Liu, Y. Xiao, et al., High-spin Fe2+ and Fe3+ in single-crystal aluminous bridgmanite in the lower mantle, Geophys. Res. Lett. 43 (13) (2016) 6952.10.1002/2016gl069836
    [16]
    M. Dorfman Susannah, J. Badro, P. Rueff, P. Chow, Y. Xiao, et al., Composition dependence of spin transition in (Mg,Fe)SiO3 bridgmanite, Am. Mineral. 100 (2015) 2246.10.2138/am-2015-5190
    [17]
    T. Okuchi, N. Purevjav, N. Tomioka, J.-F. Lin, T. Kuribayashi, et al., Synthesis of large and homogeneous single crystals of water-bearing minerals by slow cooling at deep-mantle pressures, Am. Mineral. 100 (2015) 1483.10.2138/am-2015-5237
    [18]
    L. Ismailova, E. Bykova, M. Bykov, V. Cerantola, C. McCammon, et al., Stability of Fe, Al-bearing bridgmanite in the lower mantle and synthesis of pure Fe-bridgmanite, Sci. Adv. 2 (7) (2016) e1600427.10.1126/sciadv.1600427
    [19]
    W.L. Mao, H.k. Mao, V.B. Prakapenka, J. Shu, R.J. Hemley, The effect of pressure on the structure and volume of ferromagnesian post-perovskite, Geophys. Res. Lett. 33 (12) (2006).10.1029/2006gl025770
    [20]
    S.R. Shieh, T.S. Duffy, A. Kubo, G. Shen, V.B. Prakapenka, et al., Equation of state of the postperovskite phase synthesized from a natural (Mg,Fe)SiO3 orthopyroxene, Proc. Natl. Acad. Sci. U. S. A. 103 (9) (2006) 3039–3043.10.1073/pnas.0506811103
    [21]
    S.-H. Shim, K. Catalli, J. Hustoft, A. Kubo, V.B. Prakapenka, et al., Crystal structure and thermoelastic properties of (Mg0.91Fe0.09)SiO3 postperovskite up to 135 GPa and 2,700 K, Proc. Natl. Acad. Sci. U. S. A. 105 (21) (2008) 7382–7386.10.1073/pnas.0711174105
    [22]
    T. Lay, E.J. Garnero, Reconciling the post-perovskite phase with seismological observations of lowermost mantle structure, in: Post-Perovskite: The Last Mantle Phase Transition, American Geophysical Union, 2013, pp. 129–153.
    [23]
    T. Lay, Sharpness of the D” discontinuity beneath the Cocos Plate: implications for the perovskite to post-perovskite phase transition, Geophys. Res. Lett. 35 (3) (2008) L03304.10.1029/2007gl032465
    [24]
    M.E. Wysession, T. Lay, J. Revenaugh, Q. Williams, E.J. Garnero, et al., The D” discontinuity and its implications, in: The Core-Mantle Boundary Region, American Geophysical Union, 2013, pp. 273–297.
    [25]
    K. Catalli, S.-H. Shim, V. Prakapenka, Thickness and Clapeyron slope of the post-perovskite boundary, Nature 462 (7274) (2009) 782–785.10.1038/nature08598
    [26]
    W.L. Mao, Y. Meng, G. Shen, V.B. Prakapenka, A.J. Campbell, et al., Iron-rich silicates in the Earth's D” layer, Proc. Natl. Acad. Sci. U. S. A. 102 (28) (2005) 9751–9753.10.1073/pnas.0503737102
    [27]
    W.L. Mao, H.-K. Mao, W. Sturhahn, J. Zhao, V.B. Prakapenka, et al., Iron-rich post-perovskite and the origin of ultralow-velocity zones, Science 312 (5773) (2006) 564–565.10.1126/science.1123442
    [28]
    T. Yamanaka, K. Hirose, W.L. Mao, Y. Meng, P. Ganesh, et al., Crystal structures of (Mg1-x, Fex) SiO3 postperovskite at high pressures, Proc. Natl. Acad. Sci. U. S. A. 109 (4) (2012) 1035–1040.10.1073/pnas.1118076108
    [29]
    H.O. Sørensen, S. Schmidt, J.P. Wright, G. Vaughan, S. Techert, et al., Multigrain crystallography, Z. Kristallogr. - Cryst. Mater. 227 (1) (2012) 63–78.10.1524/zkri.2012.1438
    [30]
    Y. Fei, A. Ricolleau, M. Frank, K. Mibe, G. Shen, et al., Toward an internally consistent pressure scale, Proc. Natl. Acad. Sci. U. S. A. 104 (22) (2007) 9182–9186.10.1073/pnas.0609013104
    [31]
    A. Dewaele, P. Loubeyre, M. Mezouar, Equations of state of six metals above 94 GPa, Phys. Rev. B 70 (9) (2004) 094112.10.1103/physrevb.70.094112
    [32]
    S. Schmidt, GrainSpotter: a fast and robust polycrystalline indexing algorithm, J. Appl. Crystallogr. 47 (1) (2014) 276–284.10.1107/s1600576713030185
    [33]
    P. Dera, GSE-ADA Data Analysis Program for Monochromatic Single Crystal Diffraction with Area Detector, GeoSoilEnviroCARS, Argonne, Illinois, 2007.
    [34]
    G.M. Sheldrick, A short history of SHELX, Acta Crystallogr., Sect. A: Found. Crystallogr. 64 (1) (2008) 112–122.10.1107/s0108767307043930
    [35]
    Y. Fei, H.K. Mao, B.O. Mysen, Experimental determination of element partitioning and calculation of phase relations in the MgO-FeO-SiO2 system at high pressure and high temperature, J. Geophys. Res. Solid Earth 96 (B2) (1991) 2157–2169.10.1029/90jb02164
    [36]
    J. Li, V.V. Struzhkin, H.-K. Mao, J. Shu, R.J. Hemley, et al., Electronic spin state of iron in lower mantle perovskite, Proc. Natl. Acad. Sci. U. S. A. 101 (39) (2004) 14027–14030.10.1073/pnas.0405804101
    [37]
    M. Jackson Jennifer, W. Sturhahn, G. Shen, J. Zhao, Y. Hu Michael, et al., A synchrotron Mössbauer spectroscopy study of (Mg,Fe)SiO3 perovskite up to 120 GPa, Am. Mineral. 90 (2005) 199.10.2138/am.2005.1633
    [38]
    T. Irifune, M. Isshiki, S. Sakamoto, Transmission electron microscope observation of the high-pressure form of magnesite retrieved from laser heated diamond anvil cell, Earth Planet. Sci. Lett. 239 (1–2) (2005) 98–105.10.1016/j.epsl.2005.05.043
    [39]
    A.-L. Auzende, J. Badro, F.J. Ryerson, P.K. Weber, S.J. Fallon, et al., Element partitioning between magnesium silicate perovskite and ferropericlase: new insights into bulk lower-mantle geochemistry, Earth Planet. Sci. Lett. 269 (1–2) (2008) 164–174.10.1016/j.epsl.2008.02.001
    [40]
    M. Miyahara, T. Sakai, E. Ohtani, Y. Kobayashi, S. Kamada, et al., Application of FIB system to ultra-high-pressure Earth science, J. Mineral. Petrol. Sci. 103 (2) (2008) 88–93.10.2465/jmps.070612b
    [41]
    A. Ricolleau, G. Fiquet, A. Addad, N. Menguy, C. Vanni, et al., Analytical transmission electron microscopy study of a natural MORB sample assemblage transformed at high pressure and high temperature, Am. Mineral. 93 (2008) 144.10.2138/am.2008.2532
    [42]
    E. Ohtani, Hydrous minerals and the storage of water in the deep mantle, Chem. Geol. 418 (2015) 6–15.10.1016/j.chemgeo.2015.05.005
    [43]
    D. Pearson, F. Brenker, F. Nestola, J. McNeill, L. Nasdala, et al., Hydrous mantle transition zone indicated by ringwoodite included within diamond, Nature 507 (7491) (2014) 221–224.10.1038/nature13080
    [44]
    R. Van der Hilst, S. Widiyantoro, E. Engdahl, Evidence for deep mantle circulation from global tomography, Nature 386 (1997) 578–584.10.1038/386578a0
    [45]
    A. Ringwood, A. Major, High-pressure reconnaissance investigations in the system Mg2SiO4-MgO-H2O, Earth Planet. Sci. Lett. 2 (2) (1967) 130–133.10.1016/0012-821x(67)90114-8
    [46]
    L.-g. Liu, Effects of H2O on the phase behaviour of the forsterite-enstatite system at high pressures and temperatures and implications for the Earth, Phys. Earth Planet. Inter. 49 (1–2) (1987) 142–167.10.1016/0031-9201(87)90138-5
    [47]
    M. Nishi, T. Irifune, J. Tsuchiya, Y. Tange, Y. Nishihara, et al., Stability of hydrous silicate at high pressures and water transport to the deep lower mantle, Nat. Geosci. 7 (3) (2014) 224–227.10.1038/ngeo2074
    [48]
    E. Ohtani, Y. Amaike, S. Kamada, T. Sakamaki, N. Hirao, Stability of hydrous phase H MgSiO4H2 under lower mantle conditions, Geophys. Res. Lett. 41 (23) (2014) 8283–8287.10.1002/2014gl061690
    [49]
    I. Ohira, E. Ohtani, T. Sakai, M. Miyahara, N. Hirao, et al., Stability of a hydrous δ-phase, AlOOH–MgSiO2(OH)2, and a mechanism for water transport into the base of lower mantle, Earth Planet. Sci. Lett. 401 (2014) 12–17.10.1016/j.epsl.2014.05.059
    [50]
    M.G. Pamato, R. Myhill, T.B. Ballaran, D.J. Frost, F. Heidelbach, et al., Lower-mantle water reservoir implied by the extreme stability of a hydrous aluminosilicate, Nat. Geosci. 8 (1) (2015) 75–79.10.1038/ngeo2306
    [51]
    J. Tsuchiya, First principles prediction of a new high-pressure phase of dense hydrous magnesium silicates in the lower mantle, Geophys. Res. Lett. 40 (17) (2013) 4570–4573.10.1002/grl.50875
    [52]
    K. Komatsu, A. Sano-Furukawa, H. Kagi, Effects of Mg and Si ions on the symmetry of δ-AlOOH, Phys. Chem. Miner. 38 (9) (2011) 727–733.10.1007/s00269-011-0445-0
    [53]
    T. Kuribayashi, A. Sano-Furukawa, T. Nagase, Observation of pressure-induced phase transition of δ-AlOOH by using single-crystal synchrotron X-ray diffraction method, Phys. Chem. Miner. 41 (4) (2014) 303–312.10.1007/s00269-013-0649-6
    [54]
    J. Tsuchiya, T. Tsuchiya, S. Tsuneyuki, T. Yamanaka, First principles calculation of a high-pressure hydrous phase, δ-AlOOH, Geophys. Res. Lett. 29 (19) (2002) 15-1.10.1029/2002gl015417
    [55]
    W.R. Panero, L.P. Stixrude, Hydrogen incorporation in stishovite at high pressure and symmetric hydrogen bonding in δ-AlOOH, Earth Planet. Sci. Lett. 221 (1–4) (2004) 421–431.10.1016/s0012-821x(04)00100-1
    [56]
    S. Li, R. Ahuja, B. Johansson, The elastic and optical properties of the high-pressure hydrous phase δ-AlOOH, Solid State Commun. 137 (1–2) (2006) 101–106.10.1016/j.ssc.2005.08.031
    [57]
    X. Xue, M. Kanzaki, H. Fukui, E. Ito, T. Hashimoto, Cation order and hydrogen bonding of high-pressure phases in the Al2O3-SiO2-H2O system: An NMR and Raman study, Am. Mineral. 91 (2006) 850.10.2138/am.2006.2064
    [58]
    E. Ohtani, K. Litasov, A. Suzuki, T. Kondo, Stability field of new hydrous phase, δ-AlOOH, with implications for water transport into the deep mantle, Geophys. Res. Lett. 28 (20) (2001) 3991–3993.10.1029/2001gl013397
    [59]
    E. Ohtani, K. Litasov, T. Hosoya, T. Kubo, T. Kondo, Water transport into the deep mantle and formation of a hydrous transition zone, Phys. Earth Planet. Inter. 143 (2004) 255–269.10.1016/s0031-9201(04)00060-3
    [60]
    C. McCammon, The paradox of mantle redox, Science 308 (5723) (2005) 807–808.10.1126/science.1110532
    [61]
    C. McCammon, Perovskite as a possible sink for ferric iron in the lower mantle, Nature 387 (6634) (1997) 694–696.10.1038/42685
    [62]
    C. McCammon, M. Hutchison, J. Harris, Ferric iron content of mineral inclusions in diamonds from Sao Luiz: a view into the lower mantle, Science 278 (5337) (1997) 434–436.10.1126/science.278.5337.434
    [63]
    D.J. Frost, C. Liebske, F. Langenhorst, C.A. McCammon, R.G. Tronnes, et al., Experimental evidence for the existence of iron-rich metal in the Earth's lower mantle, Nature 428 (6981) (2004) 409–412.10.1038/nature02413
    [64]
    L. Dubrovinsky, T. Boffa-Ballaran, K. Glazyrin, A. Kurnosov, D. Frost, et al., Single-crystal X-ray diffraction at megabar pressures and temperatures of thousands of degrees, High Pressure Res. 30 (4) (2010) 620–633.10.1080/08957959.2010.534092
    [65]
    B. Lavina, P. Dera, E. Kim, Y. Meng, R.T. Downs, et al., Discovery of the recoverable high-pressure iron oxide Fe4O5, Proc. Natl. Acad. Sci. U. S. A. 108 (42) (2011) 17281–17285.10.1073/pnas.1107573108
    [66]
    B. Lavina, Y. Meng, Synthesis of Fe5O6, Sci. Adv. 1 (5) (2015) e1400260.10.1126/sciadv.1400260
    [67]
    M. Merlini, M. Hanfland, A. Salamat, S. Petitgirard, H. Müller, The crystal structures of Mg2Fe2C4O13, with tetrahedrally coordinated carbon, and Fe13O19, synthesized at deep mantle conditions, Am. Mineral. 100 (8–9) (2015) 2001–2004.10.2138/am-2015-5369
    [68]
    Q. Hu, D.Y. Kim, W. Yang, L. Yang, Y. Meng, et al., FeO2 and FeOOH under deep lower-mantle conditions and Earth's oxygen–hydrogen cycles, Nature 534 (7606) (2016) 241–244.10.1038/nature18018
    [69]
    L. Zhang, Y. Meng, H.-K. Mao, Unit cell determination of coexisting post-perovskite and H-phase in (Mg,Fe)SiO3 using multigrain XRD: compositional variation across a laser heating spot at 119 GPa, Prog. Earth Planet. Sci. 3 (1) (2016) 1–6.10.1186/s40645-016-0091-8
    [70]
    S. Ono, T. Kikegawa, Y. Ohishi, Equation of state of CaIrO3-type MgSiO3 up to 144 GPa, Am. Mineral. 91 (2006) 475.10.2138/am.2006.2118
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(1)

    Article Metrics

    Article views (86) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return