Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 2 Issue 2
Mar.  2017
Turn off MathJax
Article Contents
Chen Yaohua, Li Zhichao, Xie Xufei, Zheng Chunyang, Zhai Chuanlei, Hao Liang, Yang Dong, Huo Wenyi, Ren Guoli, Liu Jie, Peng Xiaoshi, Xu Tao, Li Yulong, Li Sanwei, Yang Zhiwen, Guo Liang, Hou Lifei, Liu Yonggang, Wei Huiyue, Liu Xiangming, Cha Weiyi, Li Yukun, Deng Keli, Yuan Zheng, Zhan Xiayu, Zhang Haijun, Jiang Baibin, Zhang Wei, Du Kai, Deng Xuewei, Ding Yongkun, Wei Xiaofeng, Zheng Wanguo, Chen Xiaodong, He Xiantu, Lan Ke. First experimental comparisons of laser-plasma interactions between spherical and cylindrical hohlraums at SGIII laser facility[J]. Matter and Radiation at Extremes, 2017, 2(2). doi: 10.1016/j.mre.2017.01.001
Citation: Chen Yaohua, Li Zhichao, Xie Xufei, Zheng Chunyang, Zhai Chuanlei, Hao Liang, Yang Dong, Huo Wenyi, Ren Guoli, Liu Jie, Peng Xiaoshi, Xu Tao, Li Yulong, Li Sanwei, Yang Zhiwen, Guo Liang, Hou Lifei, Liu Yonggang, Wei Huiyue, Liu Xiangming, Cha Weiyi, Li Yukun, Deng Keli, Yuan Zheng, Zhan Xiayu, Zhang Haijun, Jiang Baibin, Zhang Wei, Du Kai, Deng Xuewei, Ding Yongkun, Wei Xiaofeng, Zheng Wanguo, Chen Xiaodong, He Xiantu, Lan Ke. First experimental comparisons of laser-plasma interactions between spherical and cylindrical hohlraums at SGIII laser facility[J]. Matter and Radiation at Extremes, 2017, 2(2). doi: 10.1016/j.mre.2017.01.001

First experimental comparisons of laser-plasma interactions between spherical and cylindrical hohlraums at SGIII laser facility

doi: 10.1016/j.mre.2017.01.001
More Information
  • Corresponding author: *Corresponding author. E-mail address: chen_yaohua@iapcm.ac.cn
  • Received Date: 2016-12-02
  • Accepted Date: 2017-01-10
  • Available Online: 2021-12-07
  • Publish Date: 2017-03-15
  • We present our recent laser-plasmas instability (LPI) comparison experiment at the SGIII laser facility between the spherical and cylindrical hohlraums. Three kinds of filling are considered: vacuum, gas-filling with or without a capsule inside. A spherical hohlraum of 3.6 mm in diameter, and a cylindrical hohlraum of 2.4 mm × 4.3 mm are used. The capsule diameter is 0.96 mm. A flat-top laser pulse with 3 ns duration and up to 92.73 kJ energy is used. The experiment has shown that the LPI level in the spherical hohlraum is close to that of the outer beam in the cylindrical hohlraum, while much lower than that of the inner beam. The experiment is further simulated by using our 2-dimensional radiation hydrodynamic code LARED-Integration, and the laser back-scattering fraction and the stimulated Raman scatter (SRS) spectrum are post-processed by the high efficiency code of laser interaction with plasmas HLIP. According to the simulation, the plasma waves are strongly damped and the SRS is mainly developed at the plasma conditions of electron density from 0.08 nc to 0.1 nc and electron temperature from 1.5 keV to 2.0 keV inside the hohlraums. However, obvious differences between the simulation and experiment are found, such as that the SRS back-scattering is underestimated, and the numerical SRS spectrum peaks at a larger wavelength and at a later time than the data. These differences indicate that the development of a 3D radiation hydrodynamic code, with more accurate physics models, is mandatory for spherical hohlraum study.
  • loading
  • [1]]
    J. Nuckolls, L. Wood, Laser compression of matter to super-high densities: thermonuclear (CTR) applications, Nature(London) 239 (1972) 139.10.1038/239139a0
    [2]
    J. Lindl, Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain, Phys. Plasmas 2 (1995) 3933.10.1063/1.871025
    [3]
    S. Atzeni, J. Meyer-ter-Vehn, The Physics of Inertial Fusion, Oxford Science, Oxford, 2004.
    [4]
    J.A. Paisner, E.M. Campbell, W.J. Hogan, The national ignition facility project, Fusion Technol. 26 (1994) 755.10.13182/fst94-a40246
    [5]
    E. Moses, R. Boyd, B. Remington, C. Keane, R. Al-Ayat, The national ignition facility: ushring in a new age for high energy density science, Phys. Plasmas 16 (2009) 041006.10.1063/1.3116505
    [6]
    S.H. Glenzer, B.J. MacGowan, P. Michel, N.B. Meezan, L.J. Suter, et al., Symmetric inertial confinement fusion implosions at ultra-high laser energies, Science 327 (2010) 1228.10.1126/science.1185634
    [7]
    S.H. Glenzer, B.J. MacGowan, N.B. Meezan, P.A. Adams, J.B. Alfonso, et al., Demonstration of ignition radiation temperatures in indirect-drive inertial confinement fusion hohlraums, Phys. Rev. Lett. 106 (2011) 085004.
    [8]
    J.L. Kline, D.A. Callahan, S.H. Glenzer, N.B. Meezan, J.D. Moody, et al., Hohlraum energetics scaling to 520 TW on the national ignition facility, Phys. Plasmas 20 (2013) 056314.
    [9]
    O.A. Hurricane, D.A. Callahan, D.T. Casey, P.M. Celliers, C. Cerjan, et al., Fuel gain exceeding unity in an inertially confined fusion implosion, Nature (2014) 10.1038/nature13008.
    [10]
    S.A. MacLaren, M.B. Schneider, K. Widmann, J.H. Hammer, B.E. Yoxall, et al., Novel characterization of capsule X-ray drive at the national ignition facility, Phys. Rev. Lett. 112 (2014) 105003.10.1103/physrevlett.112.105003
    [11]
    J.D. Lindl, O. Landen, J. Edwards, Ed Moses, Collaboration: NIC Team, Review of the national ignition campaign 2009-2012, Phys. Plasmas 21 (2014) 020501.10.1063/1.4865400
    [12]
    T. Döeppner, D.A. Callahan, O.A. Hurricane, D.E. Hinkel, T. Ma, et al., Demonstration of high performance in layered deuterium-tritium capsule implosions in uranium hohlraums at the National Ignition Facility, Phys. Rev. Lett. 115 (2015) 055001.
    [13]
    L.F. Berzak Hopkins, N.B. Meezan, S. Le Pape, L. Divol, A.J. Mackinnon, et al., First high-convergence cryogenic implosion in a near-vacuum hohlraum, Phys. Rev. Lett. 114 (2015) 175001.
    [14]
    W.L. Kruer, The Physics of Laser Plasma Interactions, Westview Press, Boulder, 2003.
    [15]
    D.E. Hinkel, D.A. Callahan, A.B. Langdon, S.H. Langer, C.H. Still, et al., Analyses of laser-plasma interactions in National Ignition Facility ignition targets, Phys. Plasmas 15 (2008) 056314.10.1063/1.2901127
    [16]
    D.E. Hinkel, M.D. Rosen, E.A. Williams, A.B. Langdon, C.H. Still, et al., Stimulated Raman scatter analyses of experiments conducted at the national ignition facility, Phys. Plasmas 18 (2011) 056312.10.1063/1.3577836
    [17]
    P. Michel, L. Divol, E.L. Dewald, J.L. Milovich, M. Hohenberger, et al., Multibeam stimulated Raman scattering in inertial confinement fusion conditions, Phys. Rev. Lett. 115 (2015) 055003.10.1103/physrevlett.115.055003
    [18]
    K. Lan, J. Liu, D.X. Lai, W.D. Zheng, X.T. He, High flux symmetry of the spherical hohlraum with octahedral 6 LEHs at the hohlraum-to-capsule radius ratio of 5.14, Phys. Plasmas 21 (2014) 010704.10.1063/1.4863435
    [19]
    K. Lan, X.T. He, J. Liu, W. Zheng, D. Lai, Octahedral spherical hohlraum and its laser arrangement for inertial fusion, Phys. Plasmas 21 (2014) 052704.10.1063/1.4878835
    [20]
    W.Y. Huo, Z.C. Li, D. Yang, K. Lan, J. Liu, et al., First demonstration of improving laser propagation inside the spherical hohlraums by using the cylindrical laser entrance hole, Matter Rad. Extrem. 1 (2016) 2 et al., Recent progress on octahedral spherical hohlraum study, Matter and Radiation at Extremes 1, 8(2016).
    [21]
    K. Lan, J. Liu, Z.C. Li, X.F. Xie, W.Y. Huo, et al., Recent progress on octahedral spherical hohlraum study, Matter Radiat. Extrem. 1 (2016) 8.10.1016/j.mre.2016.01.003
    [22]
    W.Y. Huo, Z.C. Li, Y.H. Chen, X.F. Xie, K. Lan, et al., First investigation on the radiation field of the spherical hohlraum, Phys. Rev. Lett. 117 (2016) 025002.10.1103/physrevlett.117.025002
    [23]
    T.Q. Chang, Y.K. Ding, D.X. Lai, T.X. Huan, S.P. Zhu, et al., Laser hohlraum coupling efficiency on the Shenguang II facility, Phys. Plasmas 9 (2002) 4744.10.1063/1.1516781
    [24]
    W.Y. Huo, G.L. Ren, K. Lan, X. Li, C.S. Wu, et al., Simulation study of hohlraum experiments on SGIII-prototype laser facility, Phys. Plasmas 17 (2010) 123114.10.1063/1.3526599
    [25]
    W.Y. Huo, K. Lan, P.J. Gu, H. Yong, Q.H. Zeng, Electron heat conduction under non-Maxwellian distribution in hohlraum simulation, Phys. Plasmas 19 (2012) 012313.10.1063/1.3677357
    [26]
    L. Hao, Y.Q. Zhao, D. Yang, Z.J. Liu, X.Y. Hu, et al., Analysis of stimulated Raman backscatter and stimulated Brillouin backscatter in experiments performed on SG-III prototype facility with a spectral analysis code, Pyhs. Plasmas 21 (2014) 072705.10.1063/1.4890019
    [27]
    K. Lan, P.J. Gu, G.L. Ren, X. Li, W.Y. Huo, et al., An initial design of hohlraum driven by a shaped laser pulse, Laser Part. Beams 28 (2010) 421.10.1017/s026303461000042x
    [28]
    Z.C. Li, X.H. Jiang, S.Y. Liu, T.X. Huang, J. Zheng, et al., A novel flat-response X-ray detector in the photon energy range of 0.1-4 keV, Rev. Sci. Instrum. 81 (2010) 073504.10.1063/1.3460269
    [29]
    K. Lan, T.G. Feng, D.X. Lai, Y. Xu, X.J. Meng, Study on two-dimensional transfer of radiative heating wave, Laser Part. Beams 23 (2005) 275.10.1017/s026303460505038x
    [30]
    W.B. Pei, The construction of simulation algorithms for laser fusion, Commun. Comput. Phys. 2 (2007) 255.
    [31]
    H. Yong, P. Song, C.L. Zhai, D.G. Kang, J.F. Gu, et al., Numerical simulation of 2-D radiation-drive ignition implosion process, Commun. Theor. Phys. 59 (2013) 737.10.1088/0253-6102/59/6/15
    [32]
    H. Yong, C.L. Zhai, S. Jiang, P. Song, Z.S. Dai, et al., Numerical simulations of instabilities in the implosion process of inertial confined fusion in 2D cylindrical coordinates, Sci. China 59 (2016) 614704.10.1007/s11433-015-5711-6
    [33]
    F.J.D. Serduke, E. Minguez, S.J. Davidson, C.A. Iglesias, WorkOp-IV summary: lessons from iron opacities, J. Quant. Spectrosc. Radiat. Transf. 65 (2000) 527.10.1016/s0022-4073(99)00094-1
    [34]
    M.D. Rosen, et al., The role of a detailed configuration accounting (DCA) atomic physics package in explaining the energy balance in ignition-scale hohlraums, High Energy Density Phys. 7 (2011) 180–190.10.1016/j.hedp.2011.03.008
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(4)

    Article Metrics

    Article views (150) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return