Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 2 Issue 2
Mar.  2017
Turn off MathJax
Article Contents
Murakami Masakatsu, Nishi Daiki. Optimization of laser illumination configuration for directly driven inertial confinement fusion[J]. Matter and Radiation at Extremes, 2017, 2(2). doi: 10.1016/j.mre.2016.12.002
Citation: Murakami Masakatsu, Nishi Daiki. Optimization of laser illumination configuration for directly driven inertial confinement fusion[J]. Matter and Radiation at Extremes, 2017, 2(2). doi: 10.1016/j.mre.2016.12.002

Optimization of laser illumination configuration for directly driven inertial confinement fusion

doi: 10.1016/j.mre.2016.12.002
More Information
  • Corresponding author: * Corresponding author. E-mail address: murakami-m@ile.osaka-u.ac.jp (M. Murakami).
  • Received Date: 2016-07-12
  • Accepted Date: 2016-10-25
  • Available Online: 2021-12-07
  • Publish Date: 2017-03-15
  • Optimum laser configurations are presented to achieve high illumination uniformity with directly driven inertial confinement fusion targets. Assuming axisymmetric absorption pattern of individual laser beams, theoretical models are reviewed in terms of the number of laser beams, system imperfection, and laser beam patterns. Utilizing a self-organizing system of charged particles on a sphere, a simple numerical model is provided to give an optimal configuration for an arbitrary number of laser beams. As a result, such new configurations as “M48” and “M60” are found to show substantially higher illumination uniformity than any other existing direct drive systems. A new polar direct-drive scheme is proposed with the laser axes keeping off the target center, which can be applied to laser configurations designed for indirectly driven inertial fusion.
  • loading
  • [1]
    C.A. Haynam, P.J. Wegner, J.M. Auerbach, M.W. Bowers, S.N. Dixit, et al., National Ignition Facility laser performance status, Appl. Opt. 46 (2007) 3276.10.1364/ao.46.003276
    [2]
    C. Cavailler, N. Fleurot, T. Lonjaret, J.M. Di-Nicola, Prospects and progress at LIL and megajoule, Plasma Phys. Controlled Fusion 46 (2004) B135.10.1088/0741-3335/46/12b/012
    [3]
    J.H. Nuckolls, L. Wood, A. Thiessen, G.B. Zimmermann, Laser compression of matter to super-high densities: Thermonuclear applications, Nature 239 (1972) 139.10.1038/239139a0
    [4]
    S. Atzeni, J. Meyer-ter-Vehn, The Physics of Inertial Fusion, Clarendon Press, Oxford, 2004.
    [5]
    J.D. Lindl, Inertial Confinement Fusion: The Quest for Ignition and Energy Gain Using Indirect-drive, Springer, New York, 1998.
    [6]
    M. Tabak, J.H. Hammer, M.E. Glinsky, W.L. Kruer, S.C. Wilks, et al., Ignition and high gain with ultra powerful lasers, Phys. Plasmas 1 (1994) 1626.10.1063/1.870664
    [7]
    M. Roth, T.E. Cowan, M.H. Key, S.P. Hatchett, C. Brown, et al., Fast ignition by intense laser-accelerated proton beams, Phys. Rev. Lett. 86 (2001) 436.10.1103/physrevlett.86.436
    [8]
    M. Murakami, H. Nagatomo, A new twist for inertial fusion energy: Impact ignition, Nucl. Instrum. Methods Phys. Res. Sect. A 544 (2005) 67.10.1016/j.nima.2005.01.195
    [9]
    R. Betti, C.D. Zhou, K.S. Anderson, L.J. Perkins, W. Theobald, et al., Shock ignition of thermonuclear fuel with high areal density, Phys. Rev. Lett. 98 (2007) 155001.10.1103/physrevlett.98.155001
    [10]
    T. Norimatsu, K. Nagai, T. Takeda, K. Mima, T. Yamanaka, Update for the drag force on an injected pellet and target fabrication for inertial fusion, Fusion Sci. Technol. 43 (2003) 339.10.13182/fst03-a276
    [11]
    R. Hiwatari, Y. Asaoka, K. Okano, Preliminary consideration on maintenance approach for a fast ignition ICF reactor with a dry wall chamber and a high repetition laser, Fusion Sci. Technol. 52 (2007) 911.10.13182/fst07-a1609
    [12]
    Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, et al., Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression, Phys. Rev. Lett. 53 (1984) 1057.10.1103/physrevlett.53.1057
    [13]
    S. Skupsky, R.W. Short, T. Kessler, R.S. Craxton, S. Letzring, et al., Improved laser-beam uniformity using the angular dispersion of frequency-modulated light, J. Appl. Phys. 66 (1989) 3456.10.1063/1.344101
    [14]
    R.H. Lehmberg, A.J. Schmitt, S.E. Bodner, Theory of induced spatial incoherence, J. Appl. Phys. 62 (1987) 2680.10.1063/1.339419
    [15]
    T.R. Boehly, V.A. Smalyuk, D.D. Meyerhofer, J.P. Knauer, D.K. Bradley, et al., Reduction of laser imprinting using polarization smoothing on a solid-state fusion laser, J. Appl. Phys. 85 (1999) 3444.10.1063/1.369702
    [16]
    S.E. Bodner, Critical elements of high gain laser fusion, J. Fusion Energy 1 (1981) 221.10.1007/bf01050355
    [17]
    S. Fujioka, A. Sunahara, K. Nishihara, N. Ohnishi, T. Johzaki, et al., Suppression of the Rayleigh-Taylor instability due to self-radiation in a multiablation target, Phys. Rev. Lett. 92 (2004) 195001.10.1103/physrevlett.92.195001
    [18]
    B. Canaud, F. Garaude, Optimization of laser-target coupling efficiency for direct drive laser fusion, Nucl. Fusion 45 (2005) L43.10.1088/0029-5515/45/12/l01
    [19]
    R.H. Lehmberg, J. Goldhar, Use of incoherence to produce smooth and controllable irradiation profiles with KRF fusion lasers, Fusion Technol. 11 (1987) 532.10.13182/fst87-a25033
    [20]
    M. Temporal, B. Canaud, B.J. Le Garrec, Irradiation uniformity and zooming performances for a capsule directly driven by a 32×9 laser beams configuration, Phys. Plasmas 17 (2010) 022701.10.1063/1.3309489
    [21]
    P. Michel, L. Divol, E.A. Williams, S. Weber, C.A. Thomas, et al., Tuning the implosion symmetry of ICF targets via controlled crossed-beam energy transfer, Phys. Rev. Lett. 102 (2009) 025004.10.1103/physrevlett.102.025004
    [22]
    P. Michel, S.H. Glenzer, L. Divol, D.K. Bradley, D. Callahan, et al., Symmetry tuning via controlled crossed-beam energy transfer on the National Ignition Facility, Phys. Plasmas 17 (2010) 056305.10.1063/1.3325733
    [23]
    J.D. Moody, P. Michel, L. Divol, R.L. Berger, E. Bond, et al., Multistep redirection by cross-beam power transfer of ultrahigh-power lasers in a plasma, Nat. Phys. 8 (2012) 344.10.1038/nphys2239
    [24]
    A. Schmitt, Absolutely uniform illumination of laser fusion pellets, Appl. Phys. Lett. 44 (1984) 399.10.1063/1.94788
    [25]
    M. Murakami, Irradiation system based on dodecahedron for inertial confinement fusion, Appl. Phys. Lett. 66 (1995) 1587.10.1063/1.113860
    [26]
    A.I. Ogoyski, S. Kawata, T. Someya, A.B. Blagoev, P.H. Popov, 32-beam irradiation on a spherical heavy ion fusion pellet, J. Phys. D. Appl. Phys. 37 (2004) 2392.10.1088/0022-3727/37/17/008
    [27]
    B. Canaud, F. Garaude, C. Clique, High-gain direct-drive laser fusion with indirect drive beam layout of Laser Megajoule, Nucl. Fusion 47 (2007) 1652.10.1088/0029-5515/47/12/002
    [28]
    J. Runge, B.G. Logan, Nonuniformity for rotated beam illumination in directly driven heavy-ion fusion, Phys. Plasmas 16 (2009) 033109.10.1063/1.3095561
    [29]
    M. Temporal, B. Canaud, Numerical analysis of the irradiation uniformity of a directly driven inertial confinement fusion capsule, Eur. Phys. J. D. 55 (2009) 139.10.1140/epjd/e2009-00218-2
    [30]
    M. Temporal, B. Canaud, W.J. Garbett, F. Philippe, R. Ramis, Polar direct drive illumination uniformity provided by the Orion facility, Eur. Phys. J. D. 67 (2013) 205.10.1140/epjd/e2013-40362-4
    [31]
    M. Temporal, B. Canaud, W.J. Garbett, F. Philippe, R. Ramis, Overlapping laser profiles used to mitigate the negative effects of beam uncertainties in direct-drive LMJ configurations, Euro. Phys. J. D. 69 (2015) 12.10.1140/epjd/e2014-50695-y
    [32]
    C. Yamanaka, Y. Kato, Y. Izawa, K. Yoshida, T. Yamanaka, et al., Nd-doped phosphate-glass laser systems for laser-fusion research, IEEE J. Quantum Electron. 17 (1981) 1639.10.1109/jqe.1981.1071341
    [33]
    S. Skupsky, K. Lee, Uniformity of energy deposition for laser driven fusion, J. Appl. Phys. 54 (1983) 3662.10.1063/1.332599
    [34]
    R.A. Sacks, R.C. Arnold, G.R. Magelssen, Irradiation uniformity of spherical heavy-ion-driven ICF targets, Nucl. Fusion 22 (1982) 1421.10.1088/0029-5515/22/11/002
    [35]
    T.R. Boehly, D.L. Brown, R.S. Craxton, R.L. Keck, J.P. Knauer, et al., Initial performance results of the OMEGA laser system, Opt. Commun. 133 (1997) 495.10.1016/s0030-4018(96)00325-2
    [36]
    W. Robert, The Geometrical Foundation of Natural Structure, Dover Publications, Inc, 1979, ISBN: 0-486-23729-X.
    [37]
    M. Murakami, N. Sarukura, H. Azechi, M. Temporal, A.J. Schmitt, Optimization of irradiation configuration in laser fusion utilizing self-organizing electrodynamic system, Phys. Plasmas 17 (2010) 082702.10.1063/1.3467497
    [38]
    R.S. Craxton, K.S. Anderson, T.R. Boehly, V.N. Goncharov, D.R. Harding, et al., Direct-drive inertial confinement fusion: A review, Phys. Plasmas 22 (2015) 110501.10.1063/1.4934714
    [39]
    S. Skupsky, J.A. Marozas, R.S. Craxton, R. Betti, T.J.B. Collins, et al., Polar direct drive on the National ignition facility, Plasma Phys. 11 (2004) 2763.10.1063/1.1689665
    [40]
    M. Murakami, K. Nishihara, H. Azechi, Irradiation nonuniformity due to imperfections of laser beams, J. Appl. Phys. 74 (1993) 802.10.1063/1.354869
    [41]
    M. Murakami, Analysis of radiation symmetrization in hohlraum targets, Nucl. Fusion 32 (1992) 1715.10.1088/0029-5515/32/10/i02
    [42]
    K. Lan, J. Liu, D. Lai, W. Zheng, X.-T. He, High flux symmetry of the spherical hohlraum with octahedral 6LEHs at the hohlraum-to-capsule radius ratio of 5.14, Phys. Plasmas 21 (2014) 010704.10.1063/1.4863435
    [43]
    K. Lan, J. Liu, Z. Li, X. Xie, W.Y. Huo, et al., Progress in octahedral spherical hohlraum study, Matter Radiat. Extremes 1 (2016) 8.10.1016/j.mre.2016.01.003
    [44]
    M. Murakami, J. Meyer-ter-Vehn, Radiation symmetrization in indirectly driven ICF targets, Nucl. Fusion 31 (1991) 1333.10.1088/0029-5515/31/7/008
    [45]
    J. Xiao, B. Lu, Conditions for perfectly uniform irradiation of spherical laser fusion targets, J. Opt. 29 (1998) 282.10.1088/0150-536x/29/4/007
    [46]
    M. Murakami, Design of a conic irradiation system for laser fusion, Fusion Eng. Des. 44 (1999) 111.10.1016/s0920-3796(98)00326-3
    [47]
    W.L. Kruer, The Physics of Laser Plasma Interactions, Westview Press, 2003, ISBN: 0-8133-4083-7.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(3)

    Article Metrics

    Article views (126) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return