Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 2 Issue 2
Mar.  2017
Turn off MathJax
Article Contents
Li Yongsheng, Zhai Chuanlei, Ren Guoli, Gu Jianfa, Huo Wenyi, Meng Xujun, Ye Wenhua, Lan Ke, Zhang Weiyan. P2 asymmetry of Au's M-band flux and its smoothing effect due to high-Z ablator dopants[J]. Matter and Radiation at Extremes, 2017, 2(2). doi: 10.1016/j.mre.2016.12.001
Citation: Li Yongsheng, Zhai Chuanlei, Ren Guoli, Gu Jianfa, Huo Wenyi, Meng Xujun, Ye Wenhua, Lan Ke, Zhang Weiyan. P2 asymmetry of Au's M-band flux and its smoothing effect due to high-Z ablator dopants[J]. Matter and Radiation at Extremes, 2017, 2(2). doi: 10.1016/j.mre.2016.12.001

P2 asymmetry of Au's M-band flux and its smoothing effect due to high-Z ablator dopants

doi: 10.1016/j.mre.2016.12.001
More Information
  • Corresponding author: *Corresponding author. Institute of Applied Physics and Computational Mathematics, Beijing 100094, China. E-mail address: li_yongsheng@iapcm.ac.cn (Y.S. Li).
  • Received Date: 2016-08-20
  • Accepted Date: 2016-12-05
  • Available Online: 2021-12-07
  • Publish Date: 2017-03-15
  • X-ray drive asymmetry is one of the main seeds of low-mode implosion asymmetry that blocks further improvement of the nuclear performance of “high-foot” experiments on the National Ignition Facility [Miller et al., Nucl. Fusion 44, S228 (2004)]. More particularly, the P2 asymmetry of Au's M-band flux can also severely influence the implosion performance of ignition capsules [Li et al., Phys. Plasmas 23, 072705 (2016)]. Here we study the smoothing effect of mid- and/or high-Z dopants in ablator on Au's M-band flux asymmetries, by modeling and comparing the implosion processes of a Ge-doped ignition capsule and a Si-doped one driven by X-ray sources with P2 M-band flux asymmetry. As the results, (1) mid- or high-Z dopants absorb hard X-rays (M-band flux) and re-emit isotropically, which helps to smooth the asymmetric M-band flux arriving at the ablation front, therefore reducing the P2 asymmetries of the imploding shell and hot spot; (2) the smoothing effect of Ge-dopant is more remarkable than Si-dopant because its opacity in Au's M-band is higher than the latter's; and (3) placing the doped layer at a larger radius in ablator is more efficient. Applying this effect may not be a main measure to reduce the low-mode implosion asymmetry, but might be of significance in some critical situations such as inertial confinement fusion (ICF) experiments very near the performance cliffs of asymmetric X-ray drives.
  • loading
  • [1]
    J. Lindl, Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain, Phys. Plasmas 2 (1995) 3933.10.1063/1.871025
    [2]
    J.D. Lindl, P. Amendt, R.L. Berger, S.G. Glendinning, S.H. Glenzer, et al., The physics basis for ignition using indirect-drive targets on the National Ignition Facility, Phys. Plasmas 11 (2004) 339.10.1063/1.1578638
    [3]
    S. Atzeni, J. Meyer-ter-Vehn, The Physics of Ineritial Fusion, Clarendon, Oxford, 2004.
    [4]
    G.H. Miller, E.I. Moses, C.R. Wuest, The National Ignition Facility: enabling fusion ignition for the 21st century, Nucl. Fusion 44 (2004) S228.10.1088/0029-5515/44/12/s14
    [5]
    D.S. Clark, D.E. Hinkel, D.C. Eder, O.S. Jones, S.W. Haan, et al., Detailed implosion modeling of deuterium-tritium layered experiments on the National Ignition Facility, Phys. Plasmas 20 (2013) 056318.10.1063/1.4802194
    [6]
    D.S. Clark, M.M. Marinak, C.R. Weber, D.C. Eder, S.W. Haan, et al., Radiation hydrodynamics modeling of the highest compression inertial confinement fusion ignition experiment from the National Ignition Campaign, Phys. Plasmas 22 (2015) 022703.10.1063/1.4906897
    [7]
    John Lindl, Otto Landen, John Edwards, Ed Moses, NIC team, Review of the National Ignition Campaign 2009–2012, Phys. Plasmas 21 (2014) 020501.10.1063/1.4865400
    [8]
    E.I. Moses, R.E. Bonanno, C.A. Haynam, R.L. Kauffman, B.J. MacGowan, et al., The National Ignition Facility: Path to ignition in the laboratory, J. Phys. IV 133 (2006) 57.10.1051/jp4:2006133012
    [9]
    T.R. Dittrich, O.A. Hurricane, D.A. Callahan, E.L. Dewald, T. Döppner, et al., Design of a high-foot high-adiabat ICF capsule for the National Ignition Facility, Phys. Rev. Lett. 112 (2014) 055002.10.1103/physrevlett.112.055002
    [10]
    H.-S. Park, O.A. Hurricane, D.A. Callahan, D.T. Casey, E.L. Dewald, et al., High-adiabat high-foot inertial confinement fusion implosion experiments on the National Ignition Facility, Phys. Rev. Lett. 112 (2014) 055001.10.1103/physrevlett.112.055001
    [11]
    O.A. Hurricane, D.A. Callahan, D.T. Casey, E.L. Dewald, T.R. Dittrich, et al., The high-foot implosion campaign on the National Ignition Facility, Phys. Plasmas 21 (2014) 056314.10.1063/1.4874330
    [12]
    A.B. Zylstra, J.A. Frenje, F.H. Seguin, J.R. Rygg, A. Kritcher, et al., In-flight observations of low-mode R asymmetries in NIF implosions, Phys. Plasmas 22 (2015) 056301.10.1063/1.4918355
    [13]
    V.A. Smalyuk, H.F. Robey, T. Döppner, O.S. Jones, J.L. Milovich, et al., First results of radiation-driven, layered deuterium-tritium implosions with a 3-shock adiabat-shaped drive at the National Ignition Facility, Phys. Plasmas 22 (2015) 080703.10.1063/1.4929912
    [14]
    T. Ma, P.K. Patel, N. Izumi, P.T. Springer, M.H. Key, et al., Thin shell, high velocity inertial confinement fusion implosions on the National Ignition Facility, Phys. Rev. Lett. 111 (2013) 085004.
    [15]
    R.H.H. Scott, D.S. Clark, D.K. Bradley, D.A. Callahan, M.J. Edwards, et al., Numerical modeling of the sensitivity of X-ray drive implosions to low-mode flux asymmetries, Phys. Rev. Lett. 110 (2013) 075001.10.1103/physrevlett.110.075001
    [16]
    R.P.J. Town, D.K. Bradley, A. Kritcher, O.S. Jones, J.R. Rygg, et al., Dynamic symmetry of indirectly driven inertial confinement fusion capsules on the National Ignition Facility, Phys. Plasmas 21 (2014) 056313.10.1063/1.4876609
    [17]
    R. Tommasini, J.E. Field, B.A. Hammel, O.L. Landen, S.W. Haan, et al., Tent-induced perturbations on areal density of implosions at the National Ignition Facility, Phys. Plasmas 22 (2015) 056315.10.1063/1.4921218
    [18]
    S.R. Nagel, S.W. Haan, J.R. Rygg, M. Barrios, L.R. Benedetti, et al., Effect of the mounting membrane on shape in inertial confinement fusion implosions, Phys. Plasmas 22 (2015) 022704.10.1063/1.4907179
    [19]
    O.A. Hurricane, D. A.Callahan, D.T. Casey, E.L. Dewald, T.T. Dittrich, et al., Inertially confined fusion plasmas dominated by alpha-particle self-heating, Nat. Phys. 12 (2016) 800–806.10.1038/nphys3720
    [20]
    N.K. Gupta, V. Kumar, Angular dependence of M and N band radiation and the effect of angular anisotropy on the total conversion efficiency of X rays emitted from a laser irradiated gold foil, Laser Part. Beams 13 (1995) 389.10.1017/s0263034600009526
    [21]
    J.-Y. Zhou, T.-X. Huang, M. Lin, W. Jiang, Angular distribution measurement and simulation of M band X-ray from the half-hohlraum, Acta Phys. Sin. 59 (2010) 1913.
    [22]
    Q. Li, L. Yao, L.F. Jing, Z.M. Hu, C.W. Huang, et al., Fluorescence based imaging for M-band drive symmetry measurement in hohlraum, Phys. Plasmas 23 (2016) 112707.10.1063/1.4968519
    [23]
    S.W. Haan, J.D. Lindl, D.A. Callahan, D.S. Clark, J.D. Salmonson, et al., Point design targets, specifications, and requirements for the 2010 ignition campaign on the National Ignition Facility, Phys. Plasmas 18 (2011) 051001.10.1063/1.3592169
    [24]
    P.A. Amendt, H.F. Robey, H.-S. Park, R.E. Tipton, R.E. Turner, et al., Hohlraum-driven ignition-like double-shell implosions on the Omega Laser Facility, Phys. Rev. Lett. 94 (2005) 065004.10.1103/physrevlett.94.065004
    [25]
    W.S. Varnum, N.D. Delamater, S.C. Evans, P.L. Gobby, J.E. Moore, et al., Progress toward ignition with noncryogenic double-shell capsules, Phys. Rev. Lett. 22 (2000) 5153.10.1103/physrevlett.84.5153
    [26]
    Y.S. Li, J.F. Gu, C.S. Wu, P. Song, Z.S. Dai, et al., Effects of the P2 M-band flux asymmetry of laser-driven gold hohlraums on the implosion of ICF ignition capsule, Phys. Plasmas 23 (2016) 072705.10.1063/1.4958811
    [27]
    L. Rayleigh, Scientific Papers II, Cambridge University Press, Cambridge, England, 1900, p. 200.
    [28]
    G. Taylor, The instability of liquid surfaces when accelerated in a direction perpendicular to their planes, Proc. R. Soc. Lond. Ser. A 201 (1950) 192.10.1098/rspa.1950.0052
    [29]
    R.D. Richtmyer, Taylor instability in shock acceleration of compressible fluids, Commun. Pure Appl. Math. 13 (1960) 297.10.1002/cpa.3160130207
    [30]
    E.E. Meshkov, Instability of the interface of two gases accelerated by a shock wave, Fluid Dyn. 4 (5) (1969) 101.
    [31]
    H. Duan, C.S. Wu, W.B. Pei, S.Y. Zou, Theoretical study of symmetry of flux onto a capsule, Phys. Plasmas 22 (2015) 092704.10.1063/1.4930206
    [32]
    D.S. Clark, C.R. Weber, V.A. Smalyuk, H.F. Robey, A.L. Kritcher, et al., Mitigating the impact of hohlraum asymmetries in National Ignition Facility implosions using capsule shims, Phys. Plasmas 23 (2016) 072707.10.1063/1.4958812
    [33]
    J.F. Gu, Z.S. Dai, P. Song, S.Y. Zou, W.H. Ye, Asymmetric-shell ignition capsule design to tune the low-mode asymmetry during the peak drive, Phys. Plasmas 23 (2016) 082703.10.1063/1.4960658
    [34]
    K. Lan, J. Liu, D.X. Lai, W.D. Zheng, X.T. He, High flux symmetry of the spherical hohlraum with octahedral 6LEHs at the hohlraum-to-capsule radius ratio of 5.14, Phys. Plasmas 21 (2014) 010704.10.1063/1.4863435
    [35]
    K. Lan, W.D. Zheng, Novel spherical hohlraum with cylindrical laser entrance holes and shields, Phys. Plasmas 21 (2014) 090704.10.1063/1.4895503
    [36]
    K. Lan, J. Liu, Z.C. Li, X.F. Xie, W.Y. Huo, et al., Progress in octahedral spherical hohlraum study, Matter Radiat. Extrem. 1 (2016) 8.10.1016/j.mre.2016.01.003
    [37]
    W.Y. Huo, Z.C. Li, Y.H. Chen, X.F. Xie, K. Lan, et al., First investigation on the radiation field of the spherical hohlraum, Phys. Rev. Lett. 117 (2016) 025002.10.1103/physrevlett.117.025002
    [38]
    D.H. Munro, P.M. Celliers, G.W. Collins, D.M. Gold, L.B. Da Silva, et al., Shock timing technique for the National Ignition Facility, Phys. Plasmas 8 (2001) 2245.10.1063/1.1347037
    [39]
    P. Song, C.L. Zhai, S.G. Li, H. Yong, J. Qi, et al., LARED-integration code for numerical simulation of the whole process of the indirect-drive laser inertial confinement fusion, High Power Laser Part. Beams 27 (2015) 032007.
    [40]
    Z.F. Fan, S.P. Zhu, W.B. Pei, W.H. Ye, M. Li, et al., Numerical investigation on the stabilization of the deceleration phase Rayleigh-Taylor instability due to alpha particle heating in ignition target, EPL 99 (2012) 65003.10.1209/0295-5075/99/65003
    [41]
    Z.F. Fan, X.T. He, J. Liu, G.L. Ren, B. Liu, et al., A wedged-peak pulse design with medium fuel adiabat for indirect-drive fusion, Phys. Plasmas 21 (2014) 100705.10.1063/1.4898682
    [42]
    T. Feng, D. Lai, Y. Xu, An artificial-scattering iteration method for calculating multigroup radiation transfer problems, Chin. J. Comput. Phys. 16 (1999) 199.
    [43]
    W.H. Ye, W.Y. Zhang, X.T. He, Stabilization of ablative Rayleigh-Taylor instability due to change of the Atwood number, Phys. Rev. E 65 (2002) 057401.10.1103/physreve.65.057401
    [44]
    L.F. Wang, C. Xue, W.H. Ye, Y.J. Li, Destabilizing effect of density gradient on the Kelvin-Helmholtz instability, Phys. Plasmas 16 (2009) 112104.10.1063/1.3255622
    [45]
    L.F. Wang, W.H. Ye, Y.J. Li, Interface width effect on the classical Rayleigh-Taylor instability in the weakly nonlinear regime, Phys. Plasmas 17 (2010) 052305.10.1063/1.3396369
    [46]
    J.F. Gu, Z.S. Dai, Z.F. Fan, S.Y. Zou, W.H. Ye, et al., A new metric of the low-mode asymmetry for ignition target designs, Phys. Plasmas 21 (2014) 012704.10.1063/1.4862553
    [47]
    J.F. Gu, Z.S. Dai, S.Y. Zou, P. Song, W.H. Ye, et al., New tuning method of the low-mode asymmetry for ignition capsule implosions, Phys. Plasmas 22 (2015) 122704.10.1063/1.4937799
    [48]
    F.J.D. Serduke, E. Minguez, S.J. Davidson, C.A. Iglesias, Experimental results on line shifts from dense plasmas, J. Quant. Spectrosc. Radiat. Transf. 65 (2000) 527.10.1016/s0022-4073(99)00094-1
    [49]
    Y.S. Li, W.Y. Huo, K. Lan, A novel method for determining the M-band fraction in laser-driven gold hohlraums, Phys. Plasmas 18 (2011) 022701.10.1063/1.3551698
    [50]
    J.F. Gu, S.Y. Zou, Y.S. Li, Z.S. Dai, W.H. Ye, Sensitivity study of ignition capsule implosion performance on the hard X-ray spectral distribution of hohlraum, Phys. Plasmas 19 (2012) 122710.10.1063/1.4773209
    [51]
    H.F. Robey, T.S. Perry, H.-S. Park, P. Amendt, C.M. Sorce, et al., Experimental measurements of Au M-band flux in indirectly driven double-shell implosions, Phys. Plasmas 12 (2005) 072701.10.1063/1.1927543
    [52]
    M.J. May, M.B. Schneider, S.B. Hansen, H.-K. Chung, D.E. Hinkel, et al., X-ray spectral measurements and collisional radiative modeling of hot, high-Z plasmas at the OMEGA laser, High Energy Density Phys. 4 (2008) 78–87.10.1016/j.hedp.2008.07.001
    [53]
    G.I. Bell, Taylor Instability on Cylinders and Spheres in the Small Amplitude Approximation, Los Alamos Scientific Laboratory, Report No. LA-1321, 1951.
    [54]
    M.S. Plesset, On the stability of fluid flows with spherical symmetry, J. Appl. Phys. 25 (1954) 96.10.1063/1.1721529
    [55]
    A.L. Velikovich, P.F. Schmit, Bell-Plesset effects in Rayleigh-Taylor instability of finite-thickness spherical and cylindrical shells, Phys. Plasmas 22 (2015) 122711.10.1063/1.4938272
    [56]
    L.F. Wang, J.F. Wu, H.Y. Guo, W.H. Ye, J. Liu, et al., Weakly nonlinear Bell-Plesset effects for a uniformly converging cylinder, Phys. Plasmas 22 (2015) 082702.10.1063/1.4928088
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views (90) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return