Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 2 Issue 3
May  2017
Turn off MathJax
Article Contents
Grabovski E.V., Sasorov P.V., Shevelko A.P., Aleksandrov V.V., Andreev S.N., Basko M.M., Branitski A.V., Gritsuk A.N., Volkov G.S., Laukhin Ya.N., Mitrofanov K.N., Oleinik G.M., Samokhin A.A., Smirnov V.P., Tolstikhina I.Yu., Frolov I.N., Yakushev O.F.. Investigation of Al plasmas from thin foils irradiated by high-intensity extreme ultraviolet[J]. Matter and Radiation at Extremes, 2017, 2(3). doi: 10.1016/j.mre.2016.11.007
Citation: Grabovski E.V., Sasorov P.V., Shevelko A.P., Aleksandrov V.V., Andreev S.N., Basko M.M., Branitski A.V., Gritsuk A.N., Volkov G.S., Laukhin Ya.N., Mitrofanov K.N., Oleinik G.M., Samokhin A.A., Smirnov V.P., Tolstikhina I.Yu., Frolov I.N., Yakushev O.F.. Investigation of Al plasmas from thin foils irradiated by high-intensity extreme ultraviolet[J]. Matter and Radiation at Extremes, 2017, 2(3). doi: 10.1016/j.mre.2016.11.007

Investigation of Al plasmas from thin foils irradiated by high-intensity extreme ultraviolet

doi: 10.1016/j.mre.2016.11.007
More Information
  • Corresponding author: *Corresponding author. E-mail address: angara@triniti.ru (E.V. Grabovski).
  • Received Date: 2016-07-30
  • Accepted Date: 2016-11-21
  • Available Online: 2021-12-07
  • Publish Date: 2017-05-15
  • Dynamics and spectral transmission of Al plasma produced by extreme ultraviolet (EUV) irradiation of 0.75-μm thick Al foil is investigated. The EUV radiation with the peak power density in the range of 0.19–0.54 TW/cm2 is provided by Z-pinch formed by W multiwire array implosion in the Angara-5-1 facility. Geometry of the experiment ensures that there are no plasma fluxes from the pinch toward the Al foil and plasma. The same EUV source is used as a back illuminator for obtaining the absorption spectrum of Al plasma in the wavelength range of 5–24 nm. It comprises absorption lines of ions Al4+, Al5+, Al6+, Al7+. Analysis of relative intensities of the lines shows that those ions are formed in dense Al plasma with a temperature of ∼20 eV. Dynamics of Al plasma has been investigated with transverse laser probing. We have also performed radiation-gas-dynamics simulations of plasma dynamics affected by external radiation, which includes self-consistent radiation transport in a plasma shell. The simulations show good agreement with an experimental absorption spectrum and with experimental data concerning plasma dynamics, as well as with the analysis of line absorption spectrum. This confirms the correctness of the physical model underlying these simulations.
  • loading
  • [1]
    J.M. Foster, D.J. Hoarty, C.C. Smith, P.A. Rosen, S.J. Davidson, et al., L-shell absorption spectrum of an open-M-shell germanium plasma: Comparison of experimental data with a detailed configuration accounting calculation, Phys. Rev. Lett. 67 (1991) 3255.10.1103/physrevlett.67.3255
    [2]
    T.S. Perry, S.J. Davidson, F.J.D. Serduke, D.R. Bach, C.C. Smith, et al., Opacity measurements in a hot dense medium, Phys. Rev. Lett. 67 (1991) 3784–3788.10.1103/physrevlett.67.3784
    [3]
    C. Chenais-Popovics, F. Gilleron, M. Fajardo, H. Merdji, T. Misalla, et al., Radiative heating of B, Al and Ni thin foils at 15–25 eV temperatures, J. Quant. Spectrosc. Radiat. Transfer 65 (2000) 117–133.10.1016/s0022-4073(99)00061-8
    [4]
    S.V. Bondarenko, R.V. Garanin, N.V. Zhidkov, A.V. Pinegin, N.A. Suslov, Experimental investigation of X-ray spectral absorption coefficients in heated Al and Ge on the Iskra-5 laser facility, Quantum Electron. 42 (2012) 51–57.10.1070/qe2012v042n01abeh014721
    [5]
    P.T. Springer, K.L. Wong, C.A. Iglesias, J.H. Hammer, J.L. Porter, et al., Laboratory measurement of opacity for stellar envelopes, J. Quant. Spectrosc. Radiat. Transfer 58 (1997) 927–935.10.1016/s0022-4073(97)00099-x
    [6]
    J.E. Bailey, G.A. Rochau, C.A. Iglesias, J. Abdallah, J.J. MacFarlane, et al., Iron-plasma transmission measurements at temperatures above 150 eV, Phys. Rev. Lett. 99 (2007) 265002.10.1103/physrevlett.99.265002
    [7]
    E.V. Grabovski, P.V. Sasorov, A.P. Shevelko, V.V. Aleksandrov, M.M. Basko, et al., Radiative heating of thin Al foils by intense extreme ultraviolet radiation, JETP Lett. 103 (2016) 350–356.10.1134/s0021364016050040
    [8]
    M.M. Basko, J. Maruhn, A. Tauschwitz, An efficient cell-centered diffusion scheme for quadrilateral grids, J. Comput. Phys. 228 (2009) 2175–2193.10.1016/j.jcp.2008.11.031
    [9]
    M.M. Basko, J. Maruhn, A. Tauschwitz, GSI Scientific Report 2009: Gesellschaft fur Schwerionenforschung MBH, 2010. Darmstadt, Germany, GSI Report 2010-1, 410.
    [10]
    Z.A. Albikov, Y.P. Velikhov, A.I. Veretennikov, V.A. Glukhikh, E.V. Grabovskii, et al., Experimental complex ‘ANGARA-5-1’, At. Energy 68 (1990) 26–32.
    [11]
    A.V. Branitskiy, G.M. Oleinik, Reconstruction of the parameters of a soft X-radiation spectrum from signals of vacuum X-ray diodes, Instrum. Exp. Tech. 43 (2000) 486–492.10.1007/bf02758950
    [12]
    V.V. Aleksandrov, G.S. Volkov, E.V. Grabovski, A.N. Gritsuk, N.I. Lakhtyushko, et al., Anisotropy of energy losses in high-current Z-pinches produced by the implosion of cylindrical tungsten wire arrays, Plasma Phys. Rep. 40 (2014) 135–145.10.1134/s1063780x14020019
    [13]
    A.P. Shevelko, L.A. Shmaenok, S.S. Churilov, F.J. Bastiaensen, F. Bijkerk, Extreme ultraviolet spectroscopy of a laser plasma source for lithography, Phys. Scr. 57 (1998) 276–282.10.1088/0031-8949/57/2/023
    [14]
    A.P. Shevelko, L.V. Knight, R.S. Turley, O.F. Yakushev, An intense XUV source of radiation, within the 4-45-nm-spectral range, based on capillary discharge plasmas, Proc. SPIE 4504 (2001) 143–150.
    [15]
    E.D. Kazakov, A.P. Shevelko, New method of treatment the UV spectra of multiply charged ions for the diagnosis of high temperature plasma, Voprosi atomnoy nauki i techniki, Probl. At. Sci. Technol., Ser. Thermonucl. Fusion 37 (2014) 71–75.10.21517/0202-3822-2014-37-4-71-75
    [16]
    A.P. Shevelko, E.D. Kazakov, I.Yu. Tolstikhina, D.E. Bliss, M.G. Mazarakis, et al., EUV spectroscopy of plasmas created in the final anode-cathode gap of the Z-machine high-current pulsed generator (SNL), Plasma Phys. Rep. 34 (2008) 944–954.10.1134/s1063780x08110081
    [17]
    A.C. Thompson, I. Lindau, D.T. Attwood, Y. Liu, E.M. Gillikson, et al., X-ray Data Booklet, third ed., LBNL, Berkeley, 2009. http://henke.lbl.gov/optical_constants/filter2.html.
    [18]
    M.F. Gu, The flexible atomic code Can. J. Phys. 86 (2008) 675.10.1139/p07-197
    [19]
    H.-K. Chung, M.H. Chen, W.L. Morgan, Yu. Ralshenko, R.W. Lee, Generalized population kinetics and spectral model for rapid spectroscopic analysis for all elements, High Energy Density Phys. 1 (2005) 3–7.10.1016/j.hedp.2005.07.001
    [20]
    A.F. Nikiforov, V.G. Novikov, V.B. Uvarov, Quantum-Statistical Models of Hot Dense Matter. Methods for Computation Opacity and Equation of State (Birkhauser, Basel, Switzerland 2005).
    [21]
    M.M. Basko, P.V. Sasorov, M. Murakami, V.G. Novikov, A.S. Grushin, One-dimensional study of the radiation-dominated implosion of a cylindrical tungsten plasma column, Plasma Phys. Controlled Fusion 54 (2012) 055003–055009.10.1088/0741-3335/54/5/055003
    [22]
    A. Tauschwitz, M. Basko, A. Frank, V. Novikov, A. Grushin, et al., 2D radiation-hydrodynamics modeling of laser-plasma targets for ion stopping measurements, High Energy Density Phys. 158 (2013) 9–13.
    [23]
    A. Frank, A. Blazevic, V. Bagnoud, M.M. Basko, M. Boerner, et al., Energy loss and charge transfer of argon in a laser-generated carbon plasma, Phys. Rev. Lett. 110 (2013) 115001.10.1103/physrevlett.110.115001
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)

    Article Metrics

    Article views (111) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return