Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 2 Issue 1
Jan.  2017
Turn off MathJax
Article Contents
Fan Zhengfeng, Liu Yuanyuan, Liu Bin, Yu Chengxin, Lan Ke, Liu Jie. Non-equilibrium between ions and electrons inside hot spots from National Ignition Facility experiments[J]. Matter and Radiation at Extremes, 2017, 2(1). doi: 10.1016/j.mre.2016.11.003
Citation: Fan Zhengfeng, Liu Yuanyuan, Liu Bin, Yu Chengxin, Lan Ke, Liu Jie. Non-equilibrium between ions and electrons inside hot spots from National Ignition Facility experiments[J]. Matter and Radiation at Extremes, 2017, 2(1). doi: 10.1016/j.mre.2016.11.003

Non-equilibrium between ions and electrons inside hot spots from National Ignition Facility experiments

doi: 10.1016/j.mre.2016.11.003
More Information
  • Corresponding author: *Corresponding author. E-mail address: cx_yu2013@163.com (C.X. Yu).
  • Received Date: 2016-08-22
  • Accepted Date: 2016-11-10
  • Available Online: 2021-12-07
  • Publish Date: 2017-01-15
  • The non-equilibrium between ions and electrons in the hot spot can relax the ignition conditions in inertial confinement fusion [Fan et al., Phys. Plasmas 23, 010703 (2016)], and obvious ion-electron non-equilibrium could be observed by our simulations of high-foot implosions when the ion-electron relaxation is enlarged by a factor of 2. On the other hand, in many shots of high-foot implosions on the National Ignition Facility, the observed X-ray enhancement factors due to ablator mixing into the hot spot are less than unity assuming electrons and ions have the same temperature [Meezan et al., Phys. Plasmas 22, 062703 (2015)], which is not self-consistent because it can lead to negative ablator mixing into the hot spot. Actually, this non-consistency implies ion-electron non-equilibrium within the hot spot. From our study, we can infer that ion-electron non-equilibrium exists in high-foot implosions and the ion temperature could be ∼9% larger than the equilibrium temperature in some NIF shots.
  • loading
  • [1]
    J.H. Nuckolls, L. Wood, A. Thiessen, G.B. Zimmerman, Laser compression of matter to super-high densities: Thermonuclear (CTR) applications, Nature 239 (1972) 139.10.1038/239139a0
    [2]
    J.D. Lindl, Inertial Confinement Fusion, Springer, New York, 1998.
    [3]
    S. Atzeni, J. Meyer-ter-Vehn, The Physics of Inertial Fusion, Clarendon Press, Oxford, 2004.
    [4]
    Z.F. Fan, J. Liu, B. Liu, C.X. Yu, X.T. He, Ignition conditions relaxation for central hot-spot ignition with an ion-electron nonequilibrium model, Phys. Plasmas 23 (2016) 010703.10.1063/1.4940315
    [5]
    Y.T. Lee, R.M. More, An electron conductivity model for dense plasmas, Phys. Fluids 27 (1984) 1273.10.1063/1.864744
    [6]
    T.R. Dittrich, O.A. Hurricane, D.A. Callahan, E.L. Dewald, T. Döppner, et al., Design of a high-foot high-adiabat ICF capsule for the National Ignition Facility, Phys. Rev. Lett 112 (2014) 055002.10.1103/physrevlett.112.055002
    [7]
    O.A. Hurricane, D.A. Callahan, D.T. Casey, E.L. Dewald, T.R. Dittrich, et al., The high-foot implosion campaign on the National Ignition Facility, Phys. Plasmas 21 (2014) 056314.10.1063/1.4874330
    [8]
    Z.F. Fan, S.P. Zhu, W.B. Pei, W.H. Ye, M. Li, et al., Numerical investigation on the stabilization of the deceleration phase Rayleigh-Taylor instability due to alpha particle heating in ignition target, EPL 99 (2012) 65003.10.1209/0295-5075/99/65003
    [9]
    R.M. More, K.H. Warren, D.A. Young, G.B. Zimmerman, A new quotidian equation of state (QEOS) for hot dense matter, Phys. Fluids 31 (1988) 3059.10.1063/1.866963
    [10]
    M.A. Vronskii, Yu. V. Koryakina, Electron-ion relaxation time in moderately degenerate plasma, Plasma Phys. Rep. 41 (9) (2015) 737–743.10.1134/s1063780x15090093
    [11]
    J.R. Rygg, J.A. Frenje, C.K. Li, F.H. Seguin, R.D. Petrasso, Electron-ion thermal equilibration after spherical shock collapse, Phys. Rev. E 80 (2009) 026403.10.1103/physreve.80.026403
    [12]
    G.S. Fraley, E.J. Linnebur, R.J. Mason, R.L. Mose, Thermonuclear burn characteristics of compressed deuterium-tritium microspheres, Phys. Fluids 17 (2) (1974) 474–489.10.1063/1.1694739
    [13]
    The ion temperature is averaged by Ti=σv−1(∫ρ2σv(Ti)r2dr /∫ρ2r2dr ), where σv is the DT reactivity; and the electron temperature is averaged by Te=(∫ρ2Te1/2r2dr/∫ρ2r2dr)2
    [14]
    T. Ma, P.K. Patel, N. Izumi, P.T. Springer, M.H. Key, et al., Onset of hydrodynamic mix in high-velocity, highly compressed inertial confinement fusion implosions, Phys. Rev. Lett. 111 (2013) 085004.
    [15]
    V.Y. Glebov, T.C. Sangster, C. Stoeckl, J.P. Knauer, W. Theobald, et al., The National Ignition Facility neutron time-of-flight system and its initial performance, Rev. Sci. Instrum. 81 (2010) 10D325.10.1063/1.3492351
    [16]
    D.L. Bleuel, C.B. Yeamans, L.A. Bernstein, R.M. Bionta, J.A. Caggiano, et al., Neutron activation diagnostics at the National Ignition Facility, Rev. Sci. Instrum. 83 (2012) 10D313.10.1063/1.4733741
    [17]
    D.T. Casey, J.A. Frenje, M. Gatu Johnson, F.H. Séguin, C.K. Li, et al., Measuring the absolute deuterium-ctritium neutron yield using the magnetic recoil spectrometer at OMEGA and the NIF, Rev. Sci. Instrum. 83 (2012) 10D912.10.1063/1.4738657
    [18]
    S. Glenn, J. Koch, D.K. Bradley, N. Izumi, P. Bell, et al., A hardened gated X-ray imaging diagnostic for inertial confinement fusion experiments at the National Ignition Facility, Rev. Sci. Instrum. 81 (2010) 10E539.10.1063/1.3478897
    [19]
    T. Ma, N. Izumi, R. Tommasini, D.K. Bradley, P. Bell, et al., Imaging of high-energy X-ray emission from cryogenic thermonuclear fuel implosions on the NIF, Rev. Sci. Instrum. 83 (2012) 10E115.10.1063/1.4733313
    [20]
    N. Izumi, T. Ma, M. Barrios, L.R. Benedetti, D. Callahan, et al., Measurement of electron temperature of imploded capsules at the National Ignition Facility, Rev. Sci. Instrum. 83 (2012) 10E121.10.1063/1.4738660
    [21]
    D.H. Edgell, D.K. Bradley, E.J. Bond, S. Burns, D. A Callahan, et al., South pole bang-time diagnostic on the National Ignition Facility, Rev. Sci. Instrum. 83 (2012) 10E119.10.1063/1.4731756
    [22]
    Z.F. Fan, X.T. He, J. Liu, G.L. Ren, B. Liu, et al., A wedged-peak-pulse design with medium fuel adiabat for indirect-drive fusion, Phys. Plasmas 21, 100705 (2014).10.1063/1.4898682
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views (66) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return