Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 2 Issue 1
Jan.  2017
Turn off MathJax
Article Contents
Ren Guoli, Liu Jie, Huo Wenyi, Lan Ke. Analysis of hohlraum energetics of the SG series and the NIF experiments with energy balance model[J]. Matter and Radiation at Extremes, 2017, 2(1). doi: 10.1016/j.mre.2016.11.002
Citation: Ren Guoli, Liu Jie, Huo Wenyi, Lan Ke. Analysis of hohlraum energetics of the SG series and the NIF experiments with energy balance model[J]. Matter and Radiation at Extremes, 2017, 2(1). doi: 10.1016/j.mre.2016.11.002

Analysis of hohlraum energetics of the SG series and the NIF experiments with energy balance model

doi: 10.1016/j.mre.2016.11.002
More Information
  • Corresponding author: *Corresponding author. E-mail address: ren_guoli@iapcm.ac.cn (G. Ren).
  • Received Date: 2016-09-08
  • Accepted Date: 2016-11-03
  • Available Online: 2021-12-07
  • Publish Date: 2017-01-15
  • The basic energy balance model is applied to analyze the hohlraum energetics data from the Shenguang (SG) series laser facilities and the National Ignition Facility (NIF) experiments published in the past few years. The analysis shows that the overall hohlraum energetics data are in agreement with the energy balance model within 20% deviation. The 20% deviation might be caused by the diversity in hohlraum parameters, such as material, laser pulse, gas filling density, etc. In addition, the NIF's ignition target designs and our ignition target designs given by simulations are also in accordance with the energy balance model. This work confirms the value of the energy balance model for ignition target design and experimental data assessment, and demonstrates that the NIF energy is enough to achieve ignition if a 1D spherical radiation drive could be created, meanwhile both the laser plasma instabilities and hydrodynamic instabilities could be suppressed.
  • loading
  • [1]
    J.D. Lindl, P. Amendt, R.L. Berger, S.G. Glendinning, S.H. Glenzer, et al., The physics basis for ignition using indirect-drive targets on the National Ignition Facility, Phys. Plasmas 11 (2004) 339.10.1063/1.1578638
    [2]
    S.W. Haan, J.D. Lindl, D.A. Callahan, D.S. Clark, J.D. Salmonson, et al., Point design targets, specifications, and requirements for the 2010 ignition campaign on the National Ignition Facility, Phys. Plasmas 18 (2011) 051001.10.1063/1.3592169
    [3]
    M. Vandenboomgaerde, J. Bastian, A. Casner, D. Galmiche, J.-P. Jadaud, et al., Prolate-spheroid (“Rugby-Shaped”) hohlraum for inertial confinement fusion, Phys. Rev. Lett. 99 (2007) 065004.10.1103/physrevlett.99.065004
    [4]
    P. Amendt, C. Cerjan, D.E. Hinkel, J.L. Milovich, H.-S. Park, et al., Rugby-like hohlraum experimental design for demonstrating X-ray drive enhancement, Phys. Plasmas 15 (2008) 012702.10.1063/1.2825662
    [5]
    K. Lan, J. Liu, X.T. He, W.D. Zheng, D.X. Lai, High flux symmetry of the spherical hohlraum with octahedral 6 LEHs at the hohlraum-to-capsule radius ratio of 5.14, Phys. Plasmas 21 (2014) 010704.10.1063/1.4863435
    [6]
    K. Lan, J. Liu, Z.C. Li, X.F. Xie, W.Y. Huo, et al., Progress in octahedral spherical hohlraum study, Matter Radiat. Extremes 1 (2016) 8–27.10.1016/j.mre.2016.01.003
    [7]
    R.H.H. Scott, D.S. Clark, D.K. Bradley, D.A. Callahan, M.J. Edwards, et al., Numerical modeling of the sensitivity of X-ray driven implosion to low-mode flux asymmetries, Phys. Rev. Lett. 110 (2013) 075001.10.1103/physrevlett.110.075001
    [8]
    O.A. Hurricane, D.A. Callahan, D.T. Casey, P.M. Celliers, C. Cerjan, et al., Fuel gain exceeding unity in an inertially confined fusion implosion, Nature 506 (2014) 343–348.10.1038/nature13008
    [9]
    T. Döppner, D.A. Callahan, O.A. Hurricane, D.E. Hinke, T. Ma, et al., Demonstration of high performance in layered deuterium-tritium capsule implosions in uranium hohlraums at the National Ignition Facility, Phys. Rev. Lett. 115 (2015) 055001.10.1103/PhysRevLett.115.055001
    [10]
    S.A. MacLaren, M.B. Schneider, K. Widmann, J.H. Hammer, B.E. Yoxall, et al., Novel characterization of capsule X-ray drive at the National Ignition Facility, Phys. Rev. Lett. 112 (2014) 105003.10.1103/physrevlett.112.105003
    [11]
    M.B. Schneider, S.A. MacLaren, K. Widmann, N.B. Meezan, J.H. Hammer, et al., The size and structure of the laser entrance hole in gas-filled hohlraum at the National Ignition Facility, Phys. Plasmas 22 (2015) 122705.10.1063/1.4937369
    [12]
    O.S. Jones, C.J. Cerjan, M.M. Marinak, J.L. Milovich, H.F. Robey, et al., A high-resolution integrated model of the National Ignition Campaign cryogenic layered experiments, Phys. Plasmas 19 (2012) 056315.10.1063/1.4718595
    [13]
    S.H. Glenzer, D.A. Callahan, A.J. MacKinnon, J.L. Kline, G. Grim, et al., Cryogenic thermonuclear fuel implosions on the National Ignition Facility, Phys. Plasmas 19 (2012) 056318.10.1063/1.4719686
    [14]
    W.Y. Huo, G.L. Ren, K. Lan, X. Li, C.S. Wu, et al., Simulation study of hohlraum experiments on SGIII-prototype laser facility, Phys. Plasmas 17 (2010) 123114.10.1063/1.3526599
    [15]
    W.Y. Huo, Z.C. Li, Y.H. Chen, X.F. Xie, J. Liu, et al., First investigation on the radiation field of the spherical hohlraum, Phys. Rev. Lett. 117 (2016) 025002.10.1103/physrevlett.117.025002
    [16]
    J.L. Kline, D.A. Callahan, S.H. Glenzer, N.B. Meezan, J.D. Moody, et al., Hohlraum energetics scaling to 520 TW on the National Ignition Facility, Phys. Plasmas 20 (2013) 056314.10.1063/1.4803907
    [17]
    S. Le Pape, L. Divol, L. Berzak Hopkins, A. MacKinnon, N.B. Meezan, et al., Observation of a reflected shock in indirectly driven spherical implosion at the National Ignition Facility, Phys. Rev. Lett. 112 (2014) 225002.10.1103/physrevlett.112.225002
    [18]
    A.J. MacKinnon, N.B. Meezan, J.S. Ross, T. Döppner, A. Pak, et al., High density carbon ablator experiments on the National Ignition Facility, Phys. Plasmas 21 (2014) 056318.10.1063/1.4921151
    [19]
    L.F. Berzak Hopkins, S. Le Pape, L. Divol, N.B. Meezan, A.J. Mackinnon, et al., Near-vacuum hohlraums for driving fusion implosions with high density carbon ablators, Phys. Plasmas 22 (2015) 056318.10.1063/1.4921151
    [20]
    L.F. Berzak Hopkins, N.B. Meezan, S. Le Pape, L. Divol, A.J. MacKinnon, et al., First high-convergence cryogenic implosion in a near-vacuum hohlraum, Phys. Rev. Lett. 114 (2015) 175001.10.1103/PhysRevLett.114.175001
    [21]
    X. Li, K. Lan, X. Meng, X.T. He, D.X. Lai, et al., Study on Au+U+Au sandwich hohlraum wall for ignition targets, Laser Part. Beams 28 (2010) 75.10.1017/s0263034609990590
    [22]
    J.S. Ross, D. Ho, J. Milovich, T. Döppner, J. McNaey, et al., High-density carbon capsule experiments on the National Ignition Facility, Phys. Rev. E 91 (2015) 021101.10.1103/physreve.91.021101
    [23]
    J. Edwards, Progress and Challenges in X-ray Drive ICF on the NIF, Report on the Fusion Power Associates, 2014.
    [24]
    J.D. Moody, D.A. Callahan, D.E. Hinkel, P.A. Amendt, K.L. Baker, et al., Progress in hohlraum physics for the National Ignition Facility, Phys. Plasmas 21 (2014) 056317.10.1063/1.4876966
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views (70) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return