Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 1 Issue 5
Sep.  2016
Turn off MathJax
Article Contents
Kozyrev Andrey V., Kozhevnikov Vasily Yu., Semeniuk Natalia S.. Theoretical simulation of high-voltage discharge with runaway electrons in sulfur hexafluoride at atmospheric pressure[J]. Matter and Radiation at Extremes, 2016, 1(5). doi: 10.1016/j.mre.2016.10.001
Citation: Kozyrev Andrey V., Kozhevnikov Vasily Yu., Semeniuk Natalia S.. Theoretical simulation of high-voltage discharge with runaway electrons in sulfur hexafluoride at atmospheric pressure[J]. Matter and Radiation at Extremes, 2016, 1(5). doi: 10.1016/j.mre.2016.10.001

Theoretical simulation of high-voltage discharge with runaway electrons in sulfur hexafluoride at atmospheric pressure

doi: 10.1016/j.mre.2016.10.001
More Information
  • Corresponding author: *Corresponding author. E-mail address: kozyrev@to.hcei.tsc.ru (A.V. Kozyrev).
  • Received Date: 2016-06-05
  • Accepted Date: 2016-09-20
  • Available Online: 2021-12-07
  • Publish Date: 2016-09-15
  • The results of theoretical simulation of runaway electron generation in high-pressure pulsed gas discharge with inhomogeneous electric field are presented. Hydrodynamic and kinetic approaches are used simultaneously to describe the dynamics of different components of low-temperature discharge plasma. Breakdown of coaxial diode occurs in the form of a dense plasma region expanding from the cathode. On this background there is a formation of runaway electrons that are initiated by the ensemble of plasma electrons generated in the place locally enhanced electric field in front of dense plasma. It is shown that the power spectrum of fast electrons in the discharge contains electron group with the so-called “anomalous” energy.
  • loading
  • [1]
    T. Shao, V.F. Tarasenko, C. Zhang, E. Kh. Baksht, P. Yan, et al., Repetitive nanosecond-pulse discharge in a highly nonuniform electric field in atmospheric air: X-ray emission and runaway electron generation, Laser Part. Beams 30 (2012) 369–378.10.1017/s0263034612000201
    [2]
    G.A. Mesyats, M.I. Yalandin, A.G. Reutova, K.A. Sharypov, V.G. Shpak, et al., Picoseconds’ beams of runaway electrons in air, Plasma Phys. Rep. 38 (2012) 29–45.10.1134/s1063780x11110055
    [3]
    O. Chanrion, T. Neubert, Production of runaway electrons by negative streamer discharges, J. Geophys. Res. 115 (2010) A00E32.10.1029/2009ja014774
    [4]
    V. Yu. Kozhevnikov, A.V. Kozyrev, N.S. Semeniuk, 1D simulation of runaway electrons generation in pulsed high-pressure gas discharge, Europhys. Lett. 112 (1) (2015) 15001.10.1209/0295-5075/112/15001
    [5]
    V. Yu. Kozhevnikov, A.V. Kozyrev, N.S. Semeniuk, Zero-dimensional theoretical model of subnanosecond high-pressure gas discharge, IEEE Trans. Plasma Sci. 43 (2015) 4077–4080.10.1109/tps.2015.2496218
    [6]
    D. Levko, V. Tz. Gurovich, Ya. E. Krasik, Conductivity of nanosecond discharges in nitrogen and sulfur hexafluoride studied by particle-in-cell simulations, J. Appl. Phys. 111 (2012) 123303.10.1063/1.4730373
    [7]
    D. Levko, Ya. E. Krasik, Numerical simulation of runaway electrons generation in sulfur hexafluoride, J. Appl. Phys. 111 (2012) 013305.10.1063/1.3676256
    [8]
    S.K. Dhali, A.K. Pal, Numerical simulation of streamers in SF6, J. Appl. Phys. 63 (5) (1988) 1355–1362.10.1063/1.339963
    [9]
    W.E. Schiesser, A Compendium of Partial Differential Equation Models. Method of Lines Analysis with Matlab, Cambridge University Press, New York, 2009.
    [10]
    X.-D. Liu, S. Osher, T. Chan, Weighted essentially non-oscillatory schemes, J. Comput. Phys. 115 (1) (1994) 200–212.10.1006/jcph.1994.1187
    [11]
    H.K. Versteeg, W. Malalasekera, An Introduction to Computational Fluid Dynamics. The Finite Volume Method, Longman Scientific & Technical, New York, 1995.
    [12]
    L.G. Christophorou, J.K. Olthoff, Electron interactions with SF6, J. Phys. Chem. Ref. Data 29 (2000) 267–330.10.1063/1.1288407
    [13]
    T. Xiong, J.-M. Qiu, Z. Xu, A. Christlieb, High order maximum principle preserving semi-Lagrangian finite difference WENO schemes for the Vlasov equation, J. Comput. Phys. 273 (2014) 618–639.10.1016/j.jcp.2014.05.033
    [14]
    T. Tabata, R. Ito, A generalized empirical equation for the transmission coefficient of electrons, Nucl. Instrum. Methods 127 (1975) 429–434.10.1016/s0029-554x(75)80016-4
    [15]
    L.P. Babich, T.V. Loiko, V.A. Tsukerman, High-voltage nanosecond discharge in a dense gas at high overvoltage with runaway electrons, Sov. Phys. Usp. 33 (1990) 521–539.10.1070/pu1990v033n07abeh002606
    [16]
    G.A. Askar’yan, Acceleration of particles by edge electric field of moving plasma tip, JETP Lett. 1 (1965) 44 translation 1 (1965) 97.
    [17]
    A.V. Kozyrev, V.Yu. Kozhevnikov, M.I. Lomaev, D.A. Sorokin, N.S. Semeniuk, et al., Theoretical simulation of the picosecond runaway electron beam in coaxial diode filled with SF6 at atmospheric pressure, Europhys. Lett. 114 (4) (2016) 45001.10.1209/0295-5075/114/45001
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (138) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return