Citation: | Kozyrev Andrey V., Kozhevnikov Vasily Yu., Semeniuk Natalia S.. Theoretical simulation of high-voltage discharge with runaway electrons in sulfur hexafluoride at atmospheric pressure[J]. Matter and Radiation at Extremes, 2016, 1(5). doi: 10.1016/j.mre.2016.10.001 |
[1] |
T. Shao, V.F. Tarasenko, C. Zhang, E. Kh. Baksht, P. Yan, et al., Repetitive nanosecond-pulse discharge in a highly nonuniform electric field in atmospheric air: X-ray emission and runaway electron generation, Laser Part. Beams 30 (2012) 369–378.10.1017/s0263034612000201
|
[2] |
G.A. Mesyats, M.I. Yalandin, A.G. Reutova, K.A. Sharypov, V.G. Shpak, et al., Picoseconds’ beams of runaway electrons in air, Plasma Phys. Rep. 38 (2012) 29–45.10.1134/s1063780x11110055
|
[3] |
O. Chanrion, T. Neubert, Production of runaway electrons by negative streamer discharges, J. Geophys. Res. 115 (2010) A00E32.10.1029/2009ja014774
|
[4] |
V. Yu. Kozhevnikov, A.V. Kozyrev, N.S. Semeniuk, 1D simulation of runaway electrons generation in pulsed high-pressure gas discharge, Europhys. Lett. 112 (1) (2015) 15001.10.1209/0295-5075/112/15001
|
[5] |
V. Yu. Kozhevnikov, A.V. Kozyrev, N.S. Semeniuk, Zero-dimensional theoretical model of subnanosecond high-pressure gas discharge, IEEE Trans. Plasma Sci. 43 (2015) 4077–4080.10.1109/tps.2015.2496218
|
[6] |
D. Levko, V. Tz. Gurovich, Ya. E. Krasik, Conductivity of nanosecond discharges in nitrogen and sulfur hexafluoride studied by particle-in-cell simulations, J. Appl. Phys. 111 (2012) 123303.10.1063/1.4730373
|
[7] |
D. Levko, Ya. E. Krasik, Numerical simulation of runaway electrons generation in sulfur hexafluoride, J. Appl. Phys. 111 (2012) 013305.10.1063/1.3676256
|
[8] |
S.K. Dhali, A.K. Pal, Numerical simulation of streamers in SF6, J. Appl. Phys. 63 (5) (1988) 1355–1362.10.1063/1.339963
|
[9] |
W.E. Schiesser, A Compendium of Partial Differential Equation Models. Method of Lines Analysis with Matlab, Cambridge University Press, New York, 2009.
|
[10] |
X.-D. Liu, S. Osher, T. Chan, Weighted essentially non-oscillatory schemes, J. Comput. Phys. 115 (1) (1994) 200–212.10.1006/jcph.1994.1187
|
[11] |
H.K. Versteeg, W. Malalasekera, An Introduction to Computational Fluid Dynamics. The Finite Volume Method, Longman Scientific & Technical, New York, 1995.
|
[12] |
L.G. Christophorou, J.K. Olthoff, Electron interactions with SF6, J. Phys. Chem. Ref. Data 29 (2000) 267–330.10.1063/1.1288407
|
[13] |
T. Xiong, J.-M. Qiu, Z. Xu, A. Christlieb, High order maximum principle preserving semi-Lagrangian finite difference WENO schemes for the Vlasov equation, J. Comput. Phys. 273 (2014) 618–639.10.1016/j.jcp.2014.05.033
|
[14] |
T. Tabata, R. Ito, A generalized empirical equation for the transmission coefficient of electrons, Nucl. Instrum. Methods 127 (1975) 429–434.10.1016/s0029-554x(75)80016-4
|
[15] |
L.P. Babich, T.V. Loiko, V.A. Tsukerman, High-voltage nanosecond discharge in a dense gas at high overvoltage with runaway electrons, Sov. Phys. Usp. 33 (1990) 521–539.10.1070/pu1990v033n07abeh002606
|
[16] |
G.A. Askar’yan, Acceleration of particles by edge electric field of moving plasma tip, JETP Lett. 1 (1965) 44 translation 1 (1965) 97.
|
[17] |
A.V. Kozyrev, V.Yu. Kozhevnikov, M.I. Lomaev, D.A. Sorokin, N.S. Semeniuk, et al., Theoretical simulation of the picosecond runaway electron beam in coaxial diode filled with SF6 at atmospheric pressure, Europhys. Lett. 114 (4) (2016) 45001.10.1209/0295-5075/114/45001
|