Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 2 Issue 1
Jan.  2017
Turn off MathJax
Article Contents
Gu Jianfa, Dai Zhensheng, Zou Shiyang, Ye Wenhua, Zheng Wudi, Gu Peijun, Zhu Shaoping. Effects of mode coupling between low-mode radiation flux asymmetry and intermediate-mode ablator roughness on ignition capsule implosions[J]. Matter and Radiation at Extremes, 2017, 2(1). doi: 10.1016/j.mre.2016.09.002
Citation: Gu Jianfa, Dai Zhensheng, Zou Shiyang, Ye Wenhua, Zheng Wudi, Gu Peijun, Zhu Shaoping. Effects of mode coupling between low-mode radiation flux asymmetry and intermediate-mode ablator roughness on ignition capsule implosions[J]. Matter and Radiation at Extremes, 2017, 2(1). doi: 10.1016/j.mre.2016.09.002

Effects of mode coupling between low-mode radiation flux asymmetry and intermediate-mode ablator roughness on ignition capsule implosions

doi: 10.1016/j.mre.2016.09.002
More Information
  • Corresponding author: * Corresponding author. E-mail address: gu_jianfa@iapcm.ac.cn (J.F. Gu).
  • Received Date: 2016-07-03
  • Accepted Date: 2016-08-17
  • Available Online: 2021-12-07
  • Publish Date: 2017-01-15
  • The low-mode shell asymmetry and high-mode hot spot mixing appear to be the main reasons for the performance degradation of the National Ignition Facility (NIF) implosion experiments. The effects of the mode coupling between low-mode P2 radiation flux asymmetry and intermediate-mode L = 24 capsule roughness on the implosion performance of ignition capsule are investigated by two-dimensional radiation hydrodynamic simulations. It is shown that the amplitudes of new modes generated by the mode coupling are in good agreement with the second-order mode coupling equation during the acceleration phase. The later flow field not only shows large areal density P2 asymmetry in the main fuel, but also generates large-amplitude spikes and bubbles. In the deceleration phase, the increasing mode coupling generates more new modes, and the perturbation spectrum on the hot spot boundary is mainly from the strong mode interactions rather than the initial perturbation conditions. The combination of the low-mode and high-mode perturbations breaks up the capsule shell, resulting in a significant reduction of the hot spot temperature and implosion performance.
  • loading
  • [1]
    S. Atzeni, J. Meyer-ter-Vehn, The Physics of Ineritial Fusion, Oxford Science, Oxford, 2004.
    [2]
    J.D. Lindl, Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain, Phys. Plasmas 2 (1995) 3933.10.1063/1.871025
    [3]
    J.D. Lindl, P. Amendt, R.L. Berger, S.G. Glendinning, S.H. Glenzer, et al., The physics basis for ignition using indirect-drive targets on the National ignition Facility, Phys. Plasmas 11 (2004) 339.10.1063/1.1578638
    [4]
    M.J. Edwards, P.K. Patel, J.D. Lindl, L.J. Atherton, S.H. Glenzer, et al., Progress towards ignition on the National Ignition Facility, Phys. Plasmas 20 (2013) 070501.10.1063/1.4816115
    [5]
    D.S. Clark, C.R. Weber, J.L. Milovich, J.D. Salmonson, A.L. Kritcher, et al., Three-dimensional simulations for low foot and high foot implosion experiments on the National Ignition Facility, Phys. Plasmas 23 (2016) 056302.10.1063/1.4943527
    [6]
    R.P.J. Town, D.K. Bradley, A. Kritcher, O.S. Jones, J.R. Rygg, et al., Dynamic symmetry of indirectly driven inertial confinement fusion capsules on the National Ignition Facility, Phys. Plasmas 21 (2014) 056313.10.1063/1.4876609
    [7]
    A.L. Kritcher, R.P.J. Town, D.K. Bradley, D.S. Clark, B.K. Spears, et al., Metrics for long wavelength asymmetries in inertial confinement fusion implosions on the National Ignition Facility, Phys. Plasmas 21 (2014) 042708.10.1063/1.4871718
    [8]
    J.F. Gu, Z.S. Dai, Z.F. Fan, S.Y. Zou, W.H. Ye, et al., A new metric of the low-mode asymmetry for ignition target designs, Phys. Plasmas 21 (2014) 012704.10.1063/1.4862553
    [9]
    J.L. Kline, D.A. Callahan, S.H. Glenzer, N.B. Meezan, J.D. Moody, et al., Hohlraum energetics scaling to 520 TW on the National Ignition Facility, Phys. Plasmas 20 (2013) 056314.10.1063/1.4803907
    [10]
    J.D. Moody, D.A. Callahan, D.E. Hinkel, P.A. Amendt, K.L. Baker, et al., Progress in hohlraum physics for the National Ignition Facility, Phys. Plasmas 21 (2014) 056317.10.1063/1.4876966
    [11]
    L. Rayleigh, Scientific Papers, II, Cambridge University Press, Cambridge, England, 1900, p. 200.
    [12]
    G. Taylor, The instability of liquid surfaces when accelerated in a direction perpendicular to their planes, Proc. R. Soc. A 201 (1950) 192.10.1098/rspa.1950.0052
    [13]
    M.S. Plesset, On the stability of fluid flows with spherical symmetry, J. Appl. Phys. 25 (1954) 96.10.1063/1.1721529
    [14]
    J.D. Lindl, Overview and Status of the National Ignition Campaign on the NIF, Presentation to Ignition Science Workshop, 2012.
    [15]
    C. Cerjan, P. Springer, S.M. Sepke, Integrated diagnostic analysis of inertial confinement fusion capsule performance, Phys. Plasmas 20 (2013) 056319.10.1063/1.4802196
    [16]
    A.B. Zylstra, J.A. Frenje, F.H. Séguin, J.R. Rygg, A. Kritcher, et al., In-flight observations of low-mode ρR asymmetries in NIF implosions, Phys. Plasmas 22 (2015) 056301.10.1063/1.4918355
    [17]
    N.B. Meezan, L.F. Berzak Hopkins, S. Le Pape, L. Divol, A.J. MacKinnon, et al., Cryogenic tritium-hydrogen-deuterium and deuterium-tritium layer implosions with high density carbon ablators in near-vacuum hohlraums, Phys. Plasmas 22 (2015) 062703.10.1063/1.4921947
    [18]
    G.T. Feng, K. Lan, D.X. Lai, A comparison between two averaging methods of multi-group parameters in ICF radiation transfer calculation, Chin, J. Comput. Phys. 18 (2001) 3.
    [19]
    D.H. Munro, P.M. Celliers, G.W. Collins, D.M. Gold, L.B. Da Silva, et al., Shock timing technique for the National Ignition Facility, Phys. Plasmas 8 (2001) 2245.10.1063/1.1347037
    [20]
    W.H. Ye, W.Y. Zhang, X.T. He, Stabilization of ablative Rayleigh-Taylor instability due to change of the Atwood number, Phys. Rev. E 65 (2002) 057401.10.1103/physreve.65.057401
    [21]
    J.F. Gu, Z.S. Dai, S.Y. Zou, P. Song, W.H. Ye, et al., New tuning method of the low-mode asymmetry for ignition capsule implosions, Phys. Plasmas 22 (2015) 122704.10.1063/1.4937799
    [22]
    F.J.D. Serduke, E. Minguez, S.J. Davidson, C.A. Iglesias, WorkOp-IV summary: Lessons from iron opacities, J. Quant. Spectrosc. Radiat. Transfer 65 (2000) 527.10.1016/s0022-4073(99)00094-1
    [23]
    R.D. More, K.H. Warren, D.A. Young, G.B. Zimmerman, A new quotidian equation of state (QEOS) for hot dense matter, Phys. Fluids. 31 (1988) 3059.10.1063/1.866963
    [24]
    D. Ofer, D. Shvarts, Z. Zinamon, S.A. Orszag, Mode coupling in nonlinear Rayleigh-Taylor instability, Phys. Fluids B 4 (1992) 3549.10.1063/1.860362
    [25]
    D. Ofer, U. Alon, D. Shvarts, R.L. McCronry, C.P. Verdon, Mode coupling for the nonlinear multimode Rayleigh-Taylor instability, Phys. Plasmas 3 (1996) 3073.10.1063/1.871655
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views (45) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return