Follow us on Wechat

用微信扫码二维码

分享至好友和朋友圈

Volume 1 Issue 5
Sep.  2016
Turn off MathJax
Article Contents
Meng Guangwei, Wang Jianguo, Wang Xuerong, Li Jinghong, Zhang Weiyan. Generation of a sharp density increase in radiation transport between high-Z and low-Z plasmas[J]. Matter and Radiation at Extremes, 2016, 1(5). doi: 10.1016/j.mre.2016.09.001
Citation: Meng Guangwei, Wang Jianguo, Wang Xuerong, Li Jinghong, Zhang Weiyan. Generation of a sharp density increase in radiation transport between high-Z and low-Z plasmas[J]. Matter and Radiation at Extremes, 2016, 1(5). doi: 10.1016/j.mre.2016.09.001

Generation of a sharp density increase in radiation transport between high-Z and low-Z plasmas

doi: 10.1016/j.mre.2016.09.001
More Information
  • Corresponding author: *Corresponding author.; **Corresponding author. E-mail addresses: wang_jianguo@iapcm.ac.cn (J.G. Wang), zw-y@vip.sina.com (W.Y. Zhang).
  • Received Date: 2016-04-01
  • Accepted Date: 2016-08-10
  • Publish Date: 2016-09-15
  • A sharp density increase (referred to as density incrustation) of the Au plasmas in the radiative cooling process of high-Z Au plasmas confined by low-Z CH plasmas is found through the radiative hydrodynamic simulations. The temperature of Au plasmas changes obviously in the cooling layer while the pressure remains constant. Consequently, the Au plasmas in the cooling layer are compressed, and the density incrustation is formed. It is also shown that when the high-Z plasma opacity decreases or the low-Z plasma opacity increases, the peak density of the density incrustation becomes lower and the thickness of the density incrustation becomes wider. This phenomenon is crucial to the Rayleigh–Taylor instability at the interface of high-Z and low-Z plasmas, since the density variation of Au plasmas has a considerable influence on the Atwood number of the interface.
  • loading
  • [1]
    D. Mihalas, B.W. Mihalas, Foundations of Radiation Hydrodynamics, Oxford University Press, 1984.
    [2]
    Y.B. Zel’dovich, Y.P. Raizer, Physics of Shock Waves and High-temperature Hydrodynamic Phenomena, Academic Press, New York, 1967.
    [3]
    R.P. Drake, High Energy Density Physics, Springer-Verlag, New York, 2006.
    [4]
    J. Parrent, B. Friesen, M. Parthasarathy, A review of type Ia supernova spectra, Astrophys. Space Sci. 351 (2014) 1–52.10.1007/s10509-014-1830-1
    [5]
    L. Ensman, A. Burrows, Shock breakout in SN 1987A, Astrophys. J. 393 (1992) 742.10.1086/171542
    [6]
    C. Fransson, P. Lundquist, R.A. Chevalier, Circumstellar interaction in SN 1993J, Astrophys. J. 461 (1996) 993–1008.10.1086/177119
    [7]
    J.M. Blondin, E.B. Wright, K.J. Borkowski, S.P. Reynolds, Transition to the radiative phase in supernova remnants, Astrophys. J. 500 (1998) 342–354.10.1086/305708
    [8]
    J.M. Laming, J. Grun, Dynamical overstability of radiative blast waves: the atomic physics of shock stability, Phys. Rev. Lett. 89 (2002) 125002.10.1103/physrevlett.89.125002
    [9]
    Jacco Vink, Supernova remnants: The X-ray perspective, Astron. Astrophys. Rev. 20 (2012) 49.10.1007/s00159-011-0049-1
    [10]
    P.J. Armitage, M. Livio, Hydrodynamics of the stream-disk impact in inter-acting binaries, Astrophys. J. 493 (1998) 898–908.10.1086/305149
    [11]
    T.J. Maccarone, Observational tests of the picture of disk accretion, Space Sci. Rev. 183 (2014) 101–120.10.1007/s11214-013-0032-4
    [12]
    R.P. Drake, Theory of radiative shocks in optically thick media, Phys. Plasmas 14 (2007) 043301.10.1063/1.2716639
    [13]
    Ryan G. McClarren, R. Paul Drake, J.E. Morel, James Paul Holloway, Theory of radiative shocks in the mixed, optically thick-thin case, Phys. Plasmas 17 (2010) 093301.10.1063/1.3466852
    [14]
    J. Bozier, G. Thiell, J. Lebreton, S. Azra, M. Decroisette, et al., Experimental-observation of a radiative wave generated in xenon by a laser-driven supercritical shock, Phys. Rev. Lett. 57 (1986) 1304–1307.10.1103/physrevlett.57.1304
    [15]
    Matthias Gonzalez, Chantal Stehle, Edouard Audit, Michel Busquet, Bedrich Rus, et al., Astrophysical radiative shocks: from modeling to laboratory experiments, Laser Part. Beams 24 (4) (2006) 535–540.10.1017/s026303460606071x
    [16]
    P. Keiter, R. Drake, T. Perry, H. Robey, B. Remington, et al., Observation of a hydrodynamically-driven, radiative-precursor shock, Phys. Rev. Lett. 89 (2002) 165003.10.1103/physrevlett.89.165003
    [17]
    X. Fleury, S. Bouquet, C. Stehle, M. Koenig, D. Batani, et al., A laser experiment for studying radiative shocks in astrophysics, Laser Part. Beams 20 (2002) 263–268.10.1017/s0263034602202165
    [18]
    S. Bouquet, C. Stehle, M. Koenig, J.-P. Chièze, A. Benuzzi-Mounaix, et al., Observation of laser driven supercritical radiative shock precursors, Phys. Rev. Lett. 92 (2004) 225001.10.1103/physrevlett.92.225001
    [19]
    M. Koenig, T. Vinci, A. Benuzzi-Mounaix, N. Ozaki, A. Ravasio, et al., Radiative shocks: An opportunity to study laboratory astrophysics, Phys. Plasmas 13 (2006) 056504.10.1063/1.2177637
    [20]
    A.B. Reighard, R.P. Drake, K.K. Dannenberg, D.J. Kremer, M. Grosskopf, et al., Observation of collapsing radiative shocks in laboratory experiments, Phys. Plasmas 13 (2006) 082901.10.1063/1.2222294
    [21]
    J. Osterhoff, D.R. Symes, A.D. Edens, A.S. Moore, E. Hellewell, et al., Radiative shell thinning in intense laser-driven blast waves, New J. Phys. 11 (2009) 023022.10.1088/1367-2630/11/2/023022
    [22]
    A. Diziere, C. Michaut, M. Koenig, C.D. Gregory, A. Ravasio, et al., Highly radiative shock experiments driven by GEKKO XII, Astrophys. Space Sci. 336 (2011) 213–218.10.1007/s10509-011-0653-6
    [23]
    A.J. Visco, R.P. Drake, S.H. Glenzer, T. Döppner, G. Gregori, et al., Measurement of radiative shock properties by X-ray Thomson scattering, Phys. Rev. Lett. 108 (2012) 145001.10.1103/physrevlett.108.145001
    [24]
    G.W. Meng, J.H. Li, J.M. Yang, T. Zhu, S.Y. Zou, et al., A simple method to verify the opacity and equation of state of high-Z plasmas, Phys. Plasmas 20 (2013) 092704.10.1063/1.4821836
    [25]
    G. Huser, C. Courtois, M.C. Monteil, Wall and laser spot motion in cylindrical hohlraums, Phys. Plasmas 16 (2009) 032703.10.1063/1.3099054
    [26]
    Private communication with Shiyang Zou.
    [27]
    P. Gu, W. Pei, T. Feng, C. Wu, Non-equilibrium radiation emission of the laser illuminated planar target, Sci. China, Ser. G 48 (2005) 345.10.1360/04yw0079
    [28]
    F.J.D. Serduke, E. Minguez, S.J. Davidson, C.A. Iglesias, WorkOp-IV summary: lessons from iron opacities, J. Quant. Spectrosc. Radiat. Transfer 65 (2000) 527.10.1016/s0022-4073(99)00094-1
    [29]
    R.E. Peierls, Theory on von Neumann's method of treating shocks, Technical Report LA-332, Los Alamos Scientific Laboratory, 1945.
    [30]
    William J. Rider, Revisiting wall heating, J. Comput. Phys. 162 (2000) 395–410.10.1006/jcph.2000.6544
    [31]
    J.H. Hammer, M.D. Rosen, A consistent approach to solving the radiation diffusion equation, Phys. Plasmas 10 (5) (2003) 1829.10.1063/1.1564599
    [32]
    R. Betti, M. Umansky, V. Lobatchev, V.N. Goncharov, R.L. McCrory, Hot-spot dynamics and deceleration-phase Rayleigh-Taylor instability of imploding inertial confinement fusion capsules, Phys. Plasmas 8 (2001) 5257.10.1063/1.1412006
    [33]
    R. Betti, K. Anderson, V.N. Goncharov, R.L. McCrory, D.D. Meyerhofer, et al., Deceleration phase of inertial confinement fusion implosions, Phys. Plasmas 9 (2002) 2277.10.1063/1.1459458
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article views (96) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return